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Preface!
3 The purpose of this study was to apply the boundary

element method (BEM) to two dimensional fracture mechanics

problems, and to use the BEM to analyze the interference effects

of holes on cracks through a parametric study of a two hole

3 tension strip. The study analyzed the effect of hole diameter,

pitch and crack length. The results of the study were to be

applied to a sample crack growth analysis to display the use of

the boundary element method in conventional aircraft damage

tolerance analysis.

3 The analysis of classical fracture problems showed

excellent results, and the comparisons to different finite

1 element methods were also very good.

i I could not have performed this study without the

assistance, guidance and "long term" support of my faculty

3 advisor Dr. Anthony N. Palazotto. I would also like to thank the

department chairman Dr. Peter J. Torvik for his support in

I enabling me to complete this thesis.

I wish to especially thank my wife, Teri, and my two

children, Matthew and Kevin, for their love and support during

3 the evenings and weekends that this thesis was completed in.
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Abstract

This investigation analyzes a crack emanating from

one hole, and approaching a second hole, in a two hole

tension strip with finite boundaries using the Boundary

Element Method. The study included the effects of varying the

3 hole diameter, hole separation and the length of crack. The

final results were plotted as a function of the geometric

correction factor 0, which can be presented as a family of

3 curves. An example damage tolerance analysis is presented

with the 0 curves being incorporated into a a look-up table

3 as used in the NASA/FLAGRO fatigue crack growth program. This

technique is acceptable in most fatigue crack growth programs

* now used in the aircraft industry to ensure aircraft

3 structural integrity.

Several classic fracture mechanics problems are

analyzed, and computational efficiency as compared to

conventional finite element techniques is investigated.

I Agreement with analytic solutions as well as other numerical

methods (finite element) is excellent. The computation

efficiency was shown to an improvement over existing

3 methods.
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I. IntroductionI

I The present day acceptance of a fracture mechanics

based aircraft damage tolerance criteria is based on the work

done in the late sixties and early seventies, credited to Mr

3 Charles Tiffany and Dr John Lincoln [16]. Dr Lincoln gives an

excellant review of the Air Force Damage Tolerance experience

in reference [25). Within the last decade, the Air Force has

3 placed increased emphasis on the fracture mechanics

life-cycle structural integrity of its' manned aircraft

i systems [6]. The original implementation of an Aircraft

Structural Integrity Program (ASIP) was in 1959 and the

U catastrophic events leading up to it are well documented [2].

The most significant event being the B-47 fatigue failures

which crippled the Strategic Air Command at a time of extreme

3 world tension. The B-47 showed that modern aircraft could no

longer be designed solely for static strength. This 1959 ASIP

3 involved the "Safe-Life" concept revolving around classical

"Fatigue" analysis. To account for the significant "scatter

factor" associated with fatigue testing, a scatter factor of

3 "four" was established whereby an aircraft designed for a

4000 hour service life must be aralyzed and tested for 16000

3 hours of service life. The F-l1l was such an aircraft and was

tested successfully for 16000 hours. However, in December of

I
l



1969 an F-ill with approximately 100 flight hours crashed at

Nellis AFB, Utah.

The cause of this crash was a manufacturing defect in

the wing pivot fitting that was undetected by inspections.

Also, the KC-135 aircraft was judged to have a Safe-Life of

13000 hours, yet service experience had detected fourteen

cases of unstable cracking in the lower wing skins at flight

times ranging from 1800 to 5000 hours. An F-5 which was

judged to have a Safe-Life of 4000 hours was lost at Williams

AFB, Arizona, with approximately 1900 hours. From these and

other cases it was apparent that the Safe-Life methodology

had not precluded the use of "brittle" materials and "rogue"

manufacturing or service induced defects that could lead to

premature failure. The reult was the implementation of a

"Fracture Mechanics" based "Damage Tolerance" approach to

structural integrity (5].

The Damage Tolerance approach relies on fatigue crack

growth calculations to establish the time interval required

to grow a crack from an initial size (usually the maximum

flaw undetectable with current NDI techniques) to the

critical crack length which denotes the onset ot unstable

crack growth. The crack growth equations are a function of

the local change in Stress Intensity, K, as a stress cycle is

applied. All of the current fatigue crack growth codes in use

by industry have "canned" subroutines to calculate K for

classical crack configurations. However, the practicing

2
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engineer is frequently faced with design details which are

not represented by the conventional solutions. In this case

the solution for K must be analyzed independently of the

crack growth code, with the results placed in a look-up table

as a function of crack length.

The most common method of independent analysis of

Stress Intensity Factors is the finite element method. This

numerical technique is extremely flexible in its' ability to

analyze a wide range of problems. However, finite element

models require the descretization of the body being studied,

with a gradual refinement towards the crack tip. This is very

expensive in both computer time and man hours. Alternative

solution techniques are always being sought to increase the

efficiency of these Stress Intensity Factor analyses, and

this thesis will investigate the possible advantages of using

the Boundary Element Technique.

3 The Boundary Element Method is based on a singular

solution which represents the analysis of a segment of the

I boundary of the body being analyzed. The values of the

boundary conditions are known, and the solution calculates

the results for the rest of the body. The singular solution

will satisfy the governing differential equations exactly,

and the user will approximate the boundary conditions.

Some of the earliest uses of BEM were in 1963 by

Jaswon and Ponter [101, Jaswon [9], and Symm (22] concerning

-potential problems. The first elasticity application was in

3
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1967 by Rizzo (17]. Since then the method has been used in a

3 wide variety of applications as documented by Mackerle and

Andersson [121. Examples of the BEM applied to fracture

mechanics can be found in papers by Snyder and Cruse [20] and

Rizzo and Shippy [18].

The purpose of this research is to investigate a

3 crack emanating from a hole towards another hole in a two

hole tension strip with finite boundaries. The basic BEM

technique will be verified on similar problems, either

3 classical or by finite element methods. A parametric case

study of the two hole tension strip was conducted varying the

3 hole diameter, hole separation and crack length to create a

family of Stress Intensity Factor data curves suitable for

i fatigue crack growth analysis. A sample damage tolerance

i analysis using the results of the parametric stress intensity

study is shown.

* After a theoretical development of the Fictitious

Stress BEM technique, comparison solutions to a few classic

5 fracture problems are presented, as well as a comparison to

finite element solutions. The solutions to the two hole

tension strip parametric study are presented, followed by the

3 example damage tolerance analysis.

i4
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II. Theoretical Discussion

The analytical method used for this study was the

Boundary Element Method. This method relies on a singular

* solution representing the analysis of a segment of the

boundary of the body being analyzed. The boundary conditions

are known, and the solution analyzes the impact on the

remainder of the body. The complete solution requires all of

the boundary segments be solved simultaneously and include

the effects of the boundary segments on each other. The

technique used in the analysis performed here is the

3 "Fictitious Stress" method as outlined by Crouch and

Starfield (4].

A. Fictitious Stress Method

The Fictitious Stress method utilizes the plane

strain version of Kelvin's problem (21] as the basic singular

5 solution. Kelvin's problem is a point load in an infinite

domain while the plane strain version is a line of

concentrated force.

3 As shown in Figure 1, the plane strain version of

Kelvin's problem will involve a line of force F along the z

3 direction. The components Fx and Fy have units of force per

unit depth. Kelvin showed that a harmonic function g(x,y) was

a solution to the biharmonic equation (V 2 2-0) such that

5



g(x,y)=-1/(4 i-u(1-v-) In(x'+ y')
g X dgldx g y= dgldy

Figure 1. Kelvin's Problem



g(x,y) - [-ln(x 2 + y2 )1/2]/[4n(l-v)] (1)

-where v is Poisson's ratio.

Kelvins solution for displacements components, ux and

Sy , are expressed as

ux - (Fx/2G)[(3-4v)g - xg xI + (Fy/2G)[-yg ,x (2)

uy M (F y/2G)[(3-4v)g - ygy I + (F x/2G)[-xg y

where Fx and Fy are the components of the applied point load

F, and G is the material shear modulus, and

g - g(x,y) (3)

- [-/4n(l-v)[x/(x2 
+ y 2

g2 2

= [-1/4n(l-v)]y/(x
2 + y )

gx M (/4n(l-v)](2xy/(x
2 + y )2

g x =X - g'yy M [f/4n(l-v)]f(x - Y2 )/(x2 + y2 ) 2

where g y denotes the partial differentiation of the function

g(x,y) with respect to y (ag/8y) and g denotes the partial

differentiation of g with respect to x (ag/ax). Using the

stress-strain relations produces the stress results as

7
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I x F [2(1-v)g - xg~x] + Fy[2vg - Ygxx (4)

y- Fy[2(1-v)g - yg,y + Fx (2vg - xg~yy

- F [(1-2v)g - xg + F [(l-2v)g - ygyI
where a xx ayy are the components of stress in the x and y

3 directions and a xy is the shear stress. The stresses in Eq

(4) satisfy the equations of equilibrium, and are singular at

the point x-y-0. Timoshenko and Goodier showed that these

3 stresses correspond to a line of concentrated force at the

origin [24).

To facilitate the transition of Kelvin's solution into a

form usable in a numerical technique, we consider the problem

I of tractions tx - Px and ty - Py applied to a line segment

Ixja, y-O in an infinite elastic solid. Kelvin's solution is

integrated over a line segment of length 2a as shown in

3 Figure 2. If we consider a small segment of the line, de, the

force F becomesI
Fi(C) - Pidc i-x,y (5)

We will assume a constant traction thus the new harmonic

function to satisfy the biharmonic equation, f(x,y), as shown

in [41, can be expressed in terms of g(x,y) as

8
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I
p .y F .(e)=P .

3y £ 1, y -

3~P _________0

de

* 2a

f(x,y) =/g(x - Ey) ct
a

i

I Figure 2. Integration of Kelvin's Problem

I
I
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f(x~y) - -ajag(x...c,y)dc (6)

3 - [-l/4i(1-v)1(y(arctan(y/(x-a))

- arctan(y/x+a))

I+ (x+a)ln{(x+a) 2 + 2 )1/2

-(x-a)lnf(x-a) 2 + Y2 )l/2j

Following the procedure outlined previously in the

presentation of Kelvin's problem, the displacements due to

Ithe line of concentrated force per unit depth, F i(r), are

-x W ( /2G)[(3-4v)f + yf ,Y) + (P y/2G)I-yf x 1 (7

uy M (P Y/2G)[(3-4v)f +' yf ry) + (P x/2G)(-y X

Iand the stresses become

a -x P ((3-2v)f ,x + yf Iy I + P y[2vf t, + Yf, y1 (8)

a - P x -l(1-2v)f Ix- yf JIYI + P y 2(l-v)f sy+ yf IY

a xyW (2(1-v)f sy yf r,1 + P y((1-2v)f ,x + yf IY

The derivatives of f are given as

f x 1/(4n(1-v)]rln((x-a)2 + y 2 1/2  (9)

lnfjx+a)2+ 2 1/11

fy M -1/[4n(1-v)][arctan~y/(x-a)) - arctanfy/(x+afl1

f xy.1/[4n(l-v)Iry/f(x-a)2 + I y/[(x+a) 2+ y 2)H

3 10
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f - -
,xx ,yy

i/(4n(l-v)][(x-a)/((x-a)2 + y 2

m (x+a)/((x+a)2 + y2 }

3 It is important to note that the stress solutions are not

defined for x-±a, or y-0. To investigate this further, it is

necessary to consider the the stress tensor along the line

y-0. Evaluating Eqs (8) and (9) for y-O yields the stresses

3xx W -(3-2v)/[8n(l-v)]Pxln~lx+a)/(x-a)] 2  (10)

- 2v/[4n(l-v)]P ylimY0+ arctanly/(x-a))

n - arctanfy/(x+a)}]

ayy - (l-2v)/[8n(l-v)]P xlnl(x+a)/(x-a))
2

- 1/(2n)P ylimYo arctanfy/(x-a)}

- arctan{y/(x+a)}]

Vxy W -1/(2n)P x limy (arctan(y/(x-a))

3 - arctan(y/(x+a))]

- (1-2v)/8n(1-v)]P ylnf(x+a)/(x-a)]2

where the limits on y are necessary as the arctan function is

multivalued. The arctan functions in Eq (10) are interpreted

3 to represent the angles, 01 and 02, from the ends of the line

segment, to an arbitrary point (x,y), as shown in Figure 3.

The values of 81 and 62 are seen to be

I 61 - arctan(y/(x-a)] (11)

I 11
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IY
Ix

*-a )2a

I~9 = arctanty(x-a)
3 0 2 = arctan(Y/(x+a))

Figure 3. Boundary Element Geometry
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m 2 - arctan[y/(x+a)]

When y-0, it can be seen that 9 can be -n, 0, or +n. By

examining the limit expression in Eq (10), we see that the

* three possible solutions are

limy 0[arctan(y/(x-a)) - arctanfy/(x+a)}] (12)

M 0 Ixl>a, y=0+ or y-0-

- +n Ixl<a, y-O+

- Ixl<a, y-O_I
Examining the last two values of Eq (12), it can be seen

I the stress tensor is discontinuous across the line segment at

y-0. It is instructive to examine the magnitude of the

difference in the stress tensor across y-0 for lxl<a. The

3 change in axx is

I axx(X,0_) - -(3-2v)/[8r(l-v)]Pxln((x+a)/(x-a)] 2  (13)

+ P v/[2(1-v)]

SOxx(XO+) - -(3-2v)/[8n(l-v)]Pxln[(x+a)/(x-a)] 2  (13a)

- Py v/[2(1-v))Iy
a a(x,0_) - axx (x,0) - PyV/(l-v) (13b)

3 13
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I the change in ayy is

a yy(x,O_) - (1-2v)/[8n(l-v)]Pxln((x+a)/(x-a)J 2 (14)

3 + PY/2

xyy(X,O+) - (1-2v)/[8n(l-)]P xln[(x+a)/(x-a)]2  (14a)

I y/2

a yy(X,O) - oyy (x,O+) - Py (14b)

and the change in axy is

I oxy(x,O_) - _(1-2v)/(8n(l-v)]Pylnl(x+a)/(x-a)J2  (15)

i+ P x/2

Sxy(X,O0) -(1-2v)/[8i(l-v)]Pyln[(x+a)/(x-a)] 2  (15a)

I x/2

Sxy (xO-) - a (XO) P x (15b)

It can be seen that Eqs (14b) and (15b) indicate that the

stresses P x and Py are the constant discontinuities in axy and

a yy respectively. Crouch and Starfield 14) showed that the

physical significance of the stresses Px and Py could be
interpreted as imagining the line segment jx0, y-0 as a

I

3 14
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crack in an infinite elastic solid. As shown in Figure 4, the

I outward normal to the positive side of the crack y-0+ has

components ni-(O,-l), and the outward normal to the negative
side y-0 has components ni-(0,1). With the tractions ti

defined as,

t. - Ojin j  (16)

I the tractions on the two surfaces become,

U
t x (xO + )  -0 xy(,O + )

I y(x,0+ ) - -yy (x,O+) (17)

tx(x,O) - Vxy(XO _)

t y(x,0_) - oyy (x,O)

The resultant stresses obtained by adding the traction

components ti on both sides of the crack. Substituting the
values of ayy from Eq (14b) and axy from Eq (15b) into Eq

I (17) yields,

Stx (x'0) " Px (18)

t y(xO) - Py

Thus, the stresses P and P represent the constant resultant

tractions across the line segment Ixjla, y-0.

15
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3 B. Numerical Algorithm

U To apply the fictitious stress method to a general

3 problem, it is instructive to consider the case of a hole

with a boundary C in an infinite plate. We will let the hole

be loaded by an outward pressure (p) load as depicted in

Figure 5.(a). As the hole boundary is otherwise traction

free, it is assumed the shear stress is zero, therefore, the

known boundary conditions relative to the normal (n)

tangential or shear (s) directions areI
n - p  (19)

S -0

I
We now create a system of N line segments, joined end to

end, along a boundary C' as depicted in Figure 5.(b) that

represents the boundary C of the hole in Figure 5.(a). Each

i line segment i is individually formulated with the fictitious

i stress solution for a stress Pi" Each line segment in this

example will be of a uniform length 2a. If the length 2a is

small enough the boundary C will be quite closely modeled by

C'. The local coordinates n and s as depicted in Figure 5.(a)

are relative to C so they will change depending on the

location of the point desired. The local coordinates n and s

.in Figure 5.(b) will be relative to each line segment i. It

i 17
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will then be important to order the line segments such that

the local coordinates for C and C' correspond.

It is now important to remember that the line segments

I are based on Kelvin's solution for a point load in an

infinite solid. So each line segment, or boundary element, is

in fact a line of constant local stresses in an infinite

I elastic body, which happen to coincide with the boundary C.

Each element will have its' own applied stress, Pi, but each

I element will be affected by all of the other elements. Using

the theory of superposition, if we were to calculate the

stress at a point in the body, we would have to sum all of

I the solutions for that point due to all of the elements i,

each element with an applied stress Pi" So to calculate the

3 final stresses a s and 2an at each element i, at its'

i midpoint, requires a summation of the form

ias M EN j-liJAssJPs] + ENj.l[JAsnJP n i-i to N (20)

i n i ENj- JAnsjps ] + EN j-l[jA nnP n i-i to N

I
where 'A 5 , ']A sn, ']Ans, and ']Ann are the boundary

I coefficients. As an example, ijAnn gives the actual normal

stress at the midpoint of element i (ian ) due to the

application of a unit normal stress to element j (JPn-l).

Since the values of a and 'an are known from the
boundary conditions of the original problem, it remains for

I the system of applied stresses Ps and P n to be solved

I
I 19



for by assembling a system of 2N simultaneously linear

algebraic equations in as many unknowns.

0 - ZN j.[i'jA ssjPs ] + EN j.I[" "sn'P n] i-l to N (21)

-p M ENj-l(1JAns JPs] + EN j.lIjAnnJPn i-l to N

As described in (4], it is important to realize that the

stresses JPs and jPn are fictitious, and do not really exist.

I They are merely the system of stresses applied to each

individual element along C' such that the simultaneous system

of integrated Kelvin's solutions result in the calculation of

* the actual boundary conditions of the problem being analyzed.

3 C. Co-ordinate Transformation

I The equations for the transformation of each individual

5 elements local influence coefficients into a common "global"

system is described in detail by Crouch and Starfield [4]. By

3 examining Figure 6, we will label the local co-ordinate

system for an arbitrary element as x' and y'. The element is

I defined as Ix'lIa, y'-O. The stresses applied to this element

are Px' and Py.

The local co-ordinate system is produced with a

3 translation of cx in the global x direction, c y in the global

y direction, and a rotation X about the global z axis

I (positive direction being counterclockwise). The co-ordinate

3
* 20
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I
I
I

| 21



transformation is then as follows:

X0 (x C c )cosx + (y C c )sin>, (22)

I, - - c x )sinX + (y -c y)cosX

Substituting (22) and (9) into (7) and (8) produces:

ux, M Pxf/(2G)[(3-4v)F 1 + Y'F 31 + Py, /(2G)[-y'F 2 1 (23)

u y, W Py ,/(2G)[(3-4v)F 1 - y'F3] + Px,/(2G) 1-Y'F2 ]

and

-fx'x Pxf[(3-2v)F 2 + y'F 41 + Pyoi2vF 3 - y'F 51 (24)

vyy M~ ,Il-(1-2v)F 2 - yrF 4 1 + Pyi2(1-v)F 3 + y'F 5 1

3xy - Pxo,[2(1-V)F 3 - Y'F5 I + PyllU1-2v)F 2 - y'F4 1

Iwhere the functions F 1.. .F5 are defined as:
IF -f(x',y') (25)

--1/(4n(1-v)lfyiarctan(y'/[x'-aJ)) 
/

- arctan(y'/(x'+aI)J (xt a)lnff(x'-a) +y1/2

3+ (x'.,a)ln(((x'+a) 2+ y2 J) 1/2

2 2 2' I
- 1/[4n(1-v)Jllnr(x'-a) 2+y'2 11/2 -ln((x'+a) 2+y'21/
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F3 - f,y,

i - -i/[4n(l-v)]Jarctanjy'/(x'-a)] - arctan[y'/(x'+a)]}

IF 4 "-~xy
F ~ r r2 2 2 2

- 1/[4n(l-v))]y'/[(x'-a) +y ,2 ] - y,/[(x,+a) +y,2]}

F F5 M f'x'x

3 -f ,y'y,

- i/[4n(l-v)j{(x,-a)/I(x,-a)2 +y,2

3 _ (x,+a)/[(x,+a) 2+y'2 1)

3 To calculate the displacements and stresses at a

particular element midpoint, it is necessary to calculate x'

* and y' as coordinates relative to the local element location

3 and orientation. The calculated displacements and stresses

from Eqs (22) and (23) are also in the local x'y' system.

3 Since this is not convenient, one more transformation to Eqs

(22) and (23) to compute the resulting displacements and

I stresses in the global xy coordinate system. The relations

between the xy global system and the x'y' local system are

ux - u x'cosx - uy sinX (26)

uy - uy 'cosX - u y sinX

a xx M ax'x 'c o s 2 X - 2 a xy'sinXcosX + ayy,,'sin 2 x (27)

Cr yy M Oyly,cos 2X - 2a x,ysinXcosX + oxfxSin2x

I
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-(vxx - oa ,)sinXcosX + vx~ ,(cos2X-sin2 X)I xx yy x

Substituting Eqs (26) and (27) into Eqs (22) and (23) yields

5x = - xf/(2G)[U3-4v)FlCOSX + y'(F2sinX+F3cosX)J (28)

+ P ,/(2G)[-(3-4v)FlsinX - y'(F2cosX-F3sinX)1

3 uy w Px,/(2G)II(3-4v)FlsinX - y'(F2cosX-F3sinX)]

I + Py ,/(2G)[-(3-4v)FlcosX - y'(F2sinX+F3cosX)]

3 x - PFF2 +2(1.-v)(F2cos2X-F3sin2X) (29)

" y' (F4coas2X+F5sin2X) I

+ , P1F 3-(1-2v)(F2sin2X+F3cos2X)

" y' (F4sin2X-F5cos2X) I

a y PXF 2 -2(l-v)(F2cos2X-F3sin2X)

3 - y' (F4cos2X+F5sin2X) I

+ Pr[ 73+(1-2v)(F2sin2X+F3cos2X)3 - y'(F4sin2X-F5cos2X)J

a - 'P ,[2(1-v)(F2sin2X+F3cos2X)

I + y' (F4sin2X-F~cos2X) I

I + Py ,Ul(-2v)(F2cos2X-F3sin2X)

-y'(F4cos2X+F5sin2X)J

As can be seen, Eqs (28) and (29) facilitate the

3 computation of influence coefficients to express

displacements and stresses in terms of PvandP
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D. Influence CoefficientsI
To calculate the final influence coefficients, one final

transformation of Eqs (28) and (29) are necessary. Eqs (28)

5 and (29) calculate the stresses and displacements at the i'th

element in the global coordinate system. We are interested in

displacements and stresses at the midpoint of the i'th

element in i'th elements local coordinate system, i', y', as

I shown in Figure 7. The final transform is

I
i' - x'cosy + y'siny (30)

it - -x'siny + y'cosy

where y-i- j. Therefore,

I ux, - ux,cosy + U y,siny (31)

iui, - - Ux,Sin y + ,cosy

Iand

I _ i 22
Oit'x Ox' y + 2 axiy,sinycosy + iy,y,sin y (32)

iY j ox,x,Sin 2 y - 2a x,y,sinycosy + i 2

i jv,--( i xx, oy,y,)sinycosy + x'Y ( c o s 2 y-sin2 y)

25
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By realizing that

jPS ft )p (33)

1us ftUi, (34)

IU nw-f

as = ai Y (35)
a n

5 and substituting Eqs (31) and (32) into Eqs (23) and (24)

produces

3.s jP S/(2G)((3-4v)FlCoSy + y'(F2siny-F3cosy)J (36)

+jP /(2G)[(3-4v)Flsiny -y'(F2cosy+F3siny)1

Su n m -PS/2)-(-vFsn y'(F2cosy+F3cosy)J

o+ )P n/(2G)[(3-4v)F1CoSy + y'(F2siny-F3cosy)1

and

SOrMj -1v)Fsny- F3cos2y) (37)

-y'(F4sin2y+F5cos2y)J

I+ )P n((1-2v)(F2cos2y+F3sin2r)

-y' (F4cos2y-F5sin2y) I

3 27



an - JPs[F 2-2(1-v)(F2cos2y + F3sin2y)

- y'(F4cos2y-F5sin2y)]

+ PnF 3-(l-2v)(F2sin2y-F3cos2y)

+ y'(F4sin2y+F5cos2y)]

Thus Eqs (35) and (36) can be expressed as

mi

iU EN . ij + EN " i ]Bsn Pn (38)
i Un E N i jB "sj + E N j i' "Bn j" j-i Bns3 j-i Bnn]P

and

i a ENj1 iJA ssJP + ENj 1 JAsn JPn (39)Ja N i" ' EN 'A P
- E Njl Anss ENj.1JA nn j

where iJBas, iJAss, etc., are the final influence

coefficients.

The final matrix includes two sets of 2N equations in 2N

variables, one for displacements, one for stresses. However,

both sets of equations have the fictitious stresses JP and

JPn as the unknowns. Therefore, to create a solvable system

of 2N equations, of the four boundary conditions for an

element i ( us, iun, a, and n) only two need be known

(one shear, one normal). The final matrix of influence

coefficients (2N by 2N) will consist of A's and B's as

determined by the type of boundary condition given for each
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element. Once the quantities JPs and 3P are known, Eqs (37)

and (38) can be used to calculate the remaining unknown

boundary conditions, and influence coefficients can be

calculated to analyze displacements and stresses at any other

*point in the body.

It should be noted that the resulting 2N by 2N matrix of

influence coefficients is fully populated, as every element

effects all other elements as well as itself [4]. This is in

contrast to the banded stiffness matrix produced by the

3 finite element method. Though it will be shown in this study

that the boundary element method can analyze certain types of

3 problems in far less degrees of freedom than the finite

element method, the boundary element method cannot take

I advantage of a banded matrix so much of the computational

3 advantages are lost.

Another point of interest is each elements "self

3 effects". By examining Eq (6) we see that the value of the

integrated Kelvin's solution decreases with increasing

i distance from the midpoint of an element. Therefore, the

* maximum value for an influence coefficient must be for an

elements influence on itself. Crouch and Starfield (4) show

3 that the values of all elements self effects are

I A iiA = +0.5 for y' -0 (40)
SS nn _- 0

Iii ii

B B - -(3-4v)/[4nG(l-v)]( ia)ln( ia) (41)

2ss nnI
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U As can be seen from Eqs (14) and (15), the stresses are

discontinuous across an element. The convention established

by Crouch and Starfield dictates that "the boundary of a

3 finite body is transversed in the clockwise sense, whereas

the boundary of a cavity is traversed in the counterclockwise

sense". This allows Ass and Ann to be equal to 0.5

always.

3 E. Modeling Considerations

5 As has historically been the case with the finite element

method, an engineers ability to "model" a problem correctly

I plays as much a role in the value of the final results, as

does the accuracy of the method being used. The boundary

element method also shares this characteristic. Of particular

* interest is the fact that the user should not calculate

displacements or stresses for a point "too close" to an

I elements midpoint [4]. The reason is that it has been found

* empirically that the numerical solution is generally

unreliable at points within a circle of radius equal to one

element length (2a) centered at the midpoint of a boundary

element, except at the midpoint itself. Therefore, to obtain

data close to a boundary, the user is forced to refine the

lengths of the boundary elements in a gradual fashion as the

area of interest is approached. F.R. Harris (8] developed a
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modeling technique for a crack of length "a" that can be

I incorporated into the work done herein. His method can be

stated as follows: The crack length is divided into .50a,

.25a, .125a and .125a segments. The first segment, or the

.50a length segment is divided into three equal length

boundary elements (element length - .1667a). The second

segment, or the .25a length segment, is divided into three

equal length boundary elements, (element length - .0833a).

The third segment is divided into three equal length boundary

3 elements (element length - .04167a). The last segment is

divided into 25 equal length boundary elements (element

3 length - .005a). By using this method of gradual refinement,

stresses can be computed with reasonable accuracy near the

I area of the singularity at the crack tip.

To model the problems in this study, each body was

modeled with a line of symmetry along the line of the crack.

* The entire line of symmetry was modeled with boundary

elements. The crack itself is modeled with the F.R. Harris

I method of refinement [8) outlined above. The refinement

* scheme is mirrored at the crack tip both along the crack

itself, and along the uncracked material directly in the path

3 of the crack. The elements along the non-cracked boundary

utilized enforced displacement conditions (unm0) normal to

5 the line of the crack and stress conditions tangential to the

crack (as-O). The crack surface itself was modeled as being

stress free (an= Us-0).

I
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III. Boundary Element vs Finite Element

An initial configuration of a two hole tension strip

was analyzed with both the boundary element method described

in this study, and with the MSC/NASTRAN finite element code.

Both methods were used in order to compare the relative

strengths and weaknesses. Both method only modeled the top

half of the tension strip using symmetry conditions as

enforced through restrained vertical displacement along the

3 line of symmetry.

The geometry and material properties of the problem

3: are illustrated in Figure 8. The tension strip has two holes

of 0.25 inch diameter. The holes are separated by one inch.

The edge distances to the holes are three diameters for all

3I four sides. The initial crack length is 0.1 inch, and it is

emerging from one hole and oriented towards the second hole.

The far field tension stress is 46 KSI.

*l A. Finite Element Method

There were three MSC/NASTRAN models constructed. This

was to provide convergence data. The baseline model consisted

of 13,858 degrees of freedom. The other two models had

respectively 8,610 and 15842 degrees of freedom. Needless to

say all of the models were constructed with a graphic

pre-processor/model generator (PDA/PATRAN). The baseline
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e/ e/d

* -. iaK
I H-- pitch-f

Udia = 0.25 in.
pitch - 4d

e/d = 0.10 in.
a = 0.10 in.
S = 46 KSI
E = 10300 KSI

= 0.33

Figure 8. Tensibn Strip Problem
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model is shown in Figure 9. The course model (8,610 DOF) and

I the fine model (15,842 DOF) look identical to the baseline

model only differing in the density of the mesh in the

immediate vicinity of the crack tip.

All three models consisted of a mesh of eight noded

quadratic isoparametric quad elements in the crack area. The

eight noded quad (CQUADS) mesh then transitions into a four

noded quad (CQUAD41 element mesh to complete the model. A

oehandful of six noded triangles (CTRIA6) were required in the

3 transition region.

The entire models were declared "Surfaces" as described

3 in the MSC/NASTRAN Users Manual (141 and interpolated stresses

were output at all corner grid points. The model used the

I MSC/NASTRAN "topological" option for grid point stress

calculation (141. This method assumes stresses are continuous

across connecting elements. Following the stress intensity

*factor calculation technique described in the computer

implementation section, only those stress grid points along the

I line of the crack, and at a distance of five to ten percent of

the cracks' length ahead of the crack were used in the stress

intensity factor determination. The baseline model stress grid

points in the crack tip area were only .001 inches apart

allowing five grid points in the KI calculations. The courser

finite element model (8,610 DOF) had only two stress points in

the calculation zone, while the fine model (15,842 DOF) had

I nine grids in the calculation of KI.

I
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B. Boundary Element Method

The boundary element model constructed consisted of

287 elements resulting in 574 degrees of freedom. The model

is pictured in Figure 10. The crack is descretized with F.R.

Harris's refinement technique [81 resulting in elements at

the crack tip with a length of 0.0005 inches. The model is

restrained from rigid body movement by fixing both

displacement boundary conditions for the far right element on

the line of symmetry. The boundary element model had five

element midpoints in the allowable zone for KI calculation.

C. Comparisons

Stress Intensity Factor calculations were completed

on all three finite element models and the boundary element

model using the stress extrapolation method

KI = Limr 0 [ay (2nr) 1/2] (43)

2

The values of KI were plotted against r and r to graphically

determine KI at r-0. Linear regression fits were made for

both fits. As was discussed in the computer implementation

section (Appendix A), the r2 method was necessary for cases

where the crack length approaches the second hole as the r

method yields poor curve fits. For this case, it was not
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deemed necessary as the crack length is relatively short, but

I was still done for comparison purposes. Final calculations

for KI for the r fit and the r2 fit are given in Table I. It

can be seen that both fits gave essentially the same answers,

as was expected for this case. Also, the boundary element KI

prediction was within two to three percent of the baseline

* finite element KI predictions.

The agreement between the boundary element model and

the baseline finite element model is encouraging considering

the difference in degrees of freedom (13858 to 574). From

this simple statement the reader would conclude that the

boundary element method is 24 times more efficient. But the

user must remember that the boundary element model was a

"full" matrix without the banded symmetry common to the

finite element method. A highly optimized finite element

code, such as MSC/NASTRAN, has a built in nodal resequencer

to optimize the stiffness matrix automatically. The VAX

computer operates with a "virtual memory" scheme. Matrix

I storage is handled by writing to scratch files that are

erased upon program completion. This makes it difficult to

compare storage requirements for both FEM and BEM. Therefore,

it is instructive to examine the CPU times required to run

all four models as listed-in Table 1. All of the CPU times

are for a Digital VAX 8350 computer. It can be seen that in

comparing the boundary element model to the baseline

MSC/NASTRAN model, it ran 2.2 times as long even though the
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MSC/NASTRAN model used 24 times as many degrees of freedom.

I The boundary element model barely ran faster than the 8,610

DOF course MSC/NASTRAN model.

The reason for the CPU time results lie in the

relationship between matrix size, fullness and the CPU time

to invert and solve it. The MSC/NASTRAN Handbook for Linear

Static Analysis [131 outlines a relationship between problem

size and computer time. Basically the three elements of

computer time are; overhead cost, which is dependent on

problem type but not on problem size; initial matrix set up

costs, which involve computation of the influence or

I stiffness matrices; and finally results costs which involve

solving the matrices for final computations. The results cost

I are the one that increases rapidly with an increase in

problem size. Reference (131 states that for a finite element

model with approximately 100 to 200 grids, all three costs

are the same. It is obvious that this study has far more than

200 grids, so will be dominated by the results costs.

I Reference [131 goes on to give explicit formulas for CPU

estimation, but the CPU formulas are proportional to the

number of degrees of freedom multiplied by the average (RMS)

number of active columns squared. The baseline MSC/NASTRAN

output yielded a RMS value for active columns after

resequencing of approximately ninety colums. A full BEM

matrix of 574 by 574 has a RMS column width of 332.

I
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Therefore:

I2 CPU BEM  (574 DOF)(332 columns RMS)2- 63268576 (44)

iCPU FEM  (13858 DOF)(90 columns RMS)2-I112249800

I
The ratio of CPUFEM over CPUBEM is 1.7. This indicates that a

preliminary comparison of the boundary element model to the

baseline MSC/NASTRAN model should have predicted a run time

for the MSC/NASTRAN model of 1.7 times the boundary element

3 :model, not 24 times. (Actual CPU time ratio was 2.2) Indeed,

the cost of a fully populated matrix is very high.

I
I
I
I
I
I
I
I
i
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3 Table I. MSC/NASTRAN VS BEM Tension Strip Results

Model DOF KI (r fit) KI (r2 fit) CPU

I (KSI(in)I1/ 2 )  (KSI(in)I1/ 2 ) (min)

Coarse FEM 8610 37.9 36.3 96

Baseline FEM 13858 39.6 38.9 183

Fine FEM 15842 39.5 38.9 255

U BEM 574 40.4 40.1 83

4
i
U
U
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I
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IV. Boundary Element vs p-Version Finite Element

PROBE is a commercial finite element code sold and

promoted by Noetic Technologies. The code was first conceived

i and implemented at Washington University's Center for

Computational Mechanics in St. Louis under Dr. Barna A.

Szabo. The theoretical aspects of the p-Version of finite

elements are explained by Babuska, Szabo and Katz in

I reference (2]. The implementation of the p-Version into PROBE

is given by Szabo in reference (23]. The innovative aspect of

PROBE is that it boasts elements based on variable order

3 polynomials. By doing this, the user can create very rough

grids in the creation of finite element models. By varying

I the polynomial order, or p, increased accuracy in the results

is obtained. The second advantage of PROBE is that by running

multiple p levels for a given model, the user is given an

indication of solution convergence.

Noetic Technologies worked with the Fort Worth

Division of General Dynamics (GD) on a research grant to

study the application of the p-Version to a stress intensity

factor analysis, and compare it to a classical finite element

solution. A two hole tension strip, as shown in Figure 11,

was analyzed by GD with conventional finite element analysis.

3 Noetic Technologies analyzed the same problem with the

p-Version PROBE code and published the results in reference

1 [25]. The GD model, shown in Figure 12, involved

4
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approximately 1500 degrees of freedom. The corresponding

PROBE model, as shown in Figure 13, has only 29 nodes.

However, by varying the value of p from 1 to 8, the PROBE

degrees of freedom varies between 58 and 1623.

A boundary element model was constructed of the

problem, as shown in Figure 14, consisting of 220 elements or

440 degrees of freedom. The GD model predicted a KI of 43.4

1/2KSI(in) . The PROBE results for p-i to p-8 were plotted by

KI versus I/DOF on a semi-logarithmic scale, and the

resulting straight line extrapolated to predict KI at p--.

The final PROBE prediction of KI at p-- is 43.1 KSI(in) I 2

The final BEM prediction based on a regression fit on r was

1/242.2 KSI(in) / . The final BEM prediction for a regression

fi nr 32 1/2fit on r was 43.2 KSI(in) . Both BEM predictions were

close to the GD and PROBE predictions, but the r2 fit was

better.

It should be noted that the PROBE analysis gave an

indication of convergence to the final answer. The BEM model

with an r2 regression fit was almost exact in its'

correlation with the PROBE results.
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V. Boundary Element vs Bowie SolutionU
3 Bowie [31 studied the problem of a crack growing from

a circular hole in an infinite plate as shown in Figure 15.

5, His solution is well published and can be shown in the form,

K = u(na) 1/2 (45)

where - f(a/r). Other individuals, specifically Grandt,

5 Brussat and Newman (1], have employed various technique to

improve on Bowies 0 term. For the example problem, a-46 KSI,

I r-.125 in, and a/r-.5 . Using the value of a/r-0.5, Bowie,

Brandt, Brussat and Newman calculate a value of 1.73, 1.735,

1.733 and 1.728 for 0 respectively (1). When inserted into

Eqn (45), this results in KI calculations of 35.26, 35.26,

35.32 and 35.22 KSI(in) 1/2
.

A boundary element model was created comprising of

72 elements. To model an infinite domain, a different

I modeling technique is required than for the finite domains.

3 The model is shown in Figure 16. The model is again a

representation of the "upper" half of the geometric boundary.

5 As described in the Computer Implementation section, a line

of symmetry is assumed along the x axis. Phantom "image"

I elements are calculated by the TWOFS99 program for the lower

half. One problem is the crack itself. Unlike the finite

domain problems, the crack elements cannot be on the line of

4
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symmetry as the program could not distinguish the actual

elements representing the "upper" face of the crack, from the

"image" elements representing the "lower" face of the crack.

Therefore the line of elements representing the "upper" face

of the crack are modeled with a small crack opening

offset as shown in Figure 17. The elements along the crack

are arranged in a straight line between the crack opening

offset and the crack tip. The "image" elements are therefore

calculated with an equal, but opposite, location below the

y-O line of symmetry. The objective is to model the crack

opening offset as small as possible to best represent the

actual crack, which has no such offset. But the offset must

be large enough for the TWOFS99 program to differentiate

between the two faces of the crack. This is usually a

function of the accuracy of the computer the program is

running on. The Bowie model uses an offset of 5.0(10)
- 6

inches from the y-O line of symmetry, to the intersection of

the "upper" face of the crack with the circumference of the

hole. This results in an initial offset five orders of

magnitude smaller than the actual y displacement at that

point. The crack itself is again modeled with the F.R. Harris

refinement technique which concentrates 25 elements in the

crack tip area. The model is symmetric about the y-O axis by

imposed symmetry, but the element along the circumference of

the hole, opposite from the crack, is restrained from x

displacements to prevent rigid body translation.
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Since there are no elements in the area of the stress

field used for KI calculations, points of data calculations

must be placed there. As can be seen in Figure 16, eleven

data points were placed in the line of the crack, at a

distance of 1.05a to 1.10a. The y stresses were recovered at

these points, and used to create stress extrapolation

predictions for K As before, both regression fits on r and

r were completed.

Based on the 72 element model, the KI prediction

1/22
based on a regression fit on r is 35.0 KSI(in) / . The same

model predicted 35.6 KSI(in)1/ 2 based on a r2 fit. In this

instance the r fit was more accurate than the r2 fit, but the

significant observation is that both methods provided a

prediction within one percent of the analytical predictions

of Bowie, Grandt, Brussat and Newman [1].
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VI. Boundary Element vs Shivakumar Solution

The next problem attempted is an extension of the Bowie

problem of Section VI. A second hole is added to the Bowie

problem to simulate the two hole tension strip problem of

Sections IV and V, only the domain is infinite, not finite.

Shivakumar and Foreman solved this problem (19] with a series

approach based on the Muskhelishvili formulation. The solution

is incorporated into the NASA crack growth computer program

NASA/FLAGRO (151. By selecting a far field stress of 46 KSI,

crack length of 0.0625 inches, hole diameter of 0.25 inches and

a hole separation of 1.0 inch, the analytical prediction of KI

from the NASA/FLAGRO program is 36.03 KSI(in) 1/2 .

The analytical solution assumes a row of holes in an

infinite plate. To properly model the geometry with boundary

elements, three holes were included in the analysis. This

included one hole on either side of the flawed hole. The

modeling techniques were identical to the Bowie solution model

in Section VI. The model is depicted in Figure 18. The model

consisted of 148 elements, or 296 degrees of freedom. The
2

stress data, as before, was fit to both r and r . The KI

prediction for r was 35.3 KSI(in) 1/2 while the prediction for

an r2 fit was 36.0 KSI(in) ./2 In this case the r2 fit more

closely approximated the analytical solution. However, both

fits were within two percent of the analytical solution with

the r2 fit being only 0.09 percent different.
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It is important to observe again that the analytical

solution assumes an infinite row of holes. obviously the

i three holes nearest to the crack dominated the solution, but

additional refinement could be achieved by including more of

3 the remaining holes.

5
II,
I

I
U
I
I

I
I
I
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VII. Two Hole Tension Strip Parametric Study

The final analytical task is a parametric study for a

two hole tension strip analysis. The comparisons to

conventional finite element analysis for this configuration

problem was established with MSC/NASTRAN in Section III, and

Noetic PROBE in Section IV. Correlation of the boundary

element method and modeling techniques employed in this study

were shown with the comparison to the infinite domain

problems of the Bowie solution in Section V, and the

Shivakumar solution in Section VI. This section is an

analysis of a two hole tension strip with the geometry and

boundary conditions as shown in Figure 19. The edge distance

from the center of the holes to the side, top and bottom

edges is established as three hole diameters. All cases will

be analyzed for a far field tension stress of 46 KSI. The

parameters that are varied in this study are hole diameter,

d, hole separation (center to center) p (expressed as a ratio

of hole diameter), and crack length a. This study expressed

crack length as a ratio where

crack ratio - a/( P - D ) (46)

where a - crack length (in)

D - hole diameter (in)

P - hole pitch as a ratio of D( D in)
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I
This enables the crack length to be expressed as a fraction of

* the distance of material available between the two holes.

Therefore a crack ratio of zero corresponds to no crack at all,

and a crack ratio of one implies the crack has broken through

from the first hole into the second hole.

The study included hole diameters of 0.25, 0.33 and

0.50 inches. The pitch was analyzed for 3D, 4D and 5D, and the

crack ratio was analyzed for 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

U 0.8, and 0.9 . The values for hole diameter, edge distance and

3 hole separation were chosen to represent realistic geometry

found in actual applications. The final study involved 81

5 models of the different configurations listed here, as well as

18 more models for additional work not included in the baseline

I analysis.

3 The size of the models varied from 240 to 340 elements.

All of the models were created by the same model generator,

CHOLE, as documented in Appendix A. The crack tip refinement

method was the F.R. Harris technique (8].

* The stress field data was collected at a distance five

to ten percent of the crack length ahead of the crack tip. This

is the same method used throughout this thesis. The stress

field is used to predict the mode I crack tip stress intensity

factor, KI, by using the equation

KI - Limr4O [ay (2nr)1/ 2 ]  (43)
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as documented in Appendix A for the program TWOFS99 EX.

3 TWOFS99_EX extracted the stress field data for all of the

boundary element models, computed the values of KI and r, andI 2
fit the data with a linear regression analysis of KI vs r .

Throughout this thesis, KI predictions based on regression fits

of r and r have been presented. The results were for the

3 geometry analyzed. There was no significant difference in which

fit was chosen, and neither regression fit was consistently

i more accurate than the other. However, during the course of

3 this study, it was found that for crack ratios approaching 0.9,

due to the influence of the approaching second hole, the KI vs

3 r curve is decidedly non-linear. Therefore, a linear regression

fit was non-representative. The KI vs r2 curve was much more

3 linear, and the regression fit of that data was representative.

For this reason, all KI predictions presented in this section

are based on a KI vs r2 regression fit only. Examples of KI

data plotted against r and r2 are presented in Appendix F.

The KI calculations for hole diameters of 0.25, 0.33

3 and 0.50 inches are presented in Figures 20, 21, and 22

respectively. The calculated KI values are plotted against the

crack ratios and are presented as a family of curves varying by

3 the pitch. The figures show the trend is for increasing values

of KI for increasing crack ratios, and for increasing KI for

3 increasing hole diameter. The KI also increased for increasing

pitch ratios. If the data were plotted on the same graph, the

I
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presentation would be confusing as the curves would overlap,

making interpretation of results difficult. A better way of

presenting the data from this study is the Stress Intensity

Factor Correction Coefficient, 0, as defined by

0 - KI/a(na)1 /2  (46)

By "normalizing" the stress intensity factor, the influence

of far field stress and crack length are removed, allowing

for isolation of the geometric Correction Coefficient (0) of

the problem being solved. The 0 factors are presented in

Figure 23. It was found that by plotting 0 versus the crack

ratio, a family of curves varying by the pitch ratio could be

produced. Once plotted with these parameters, the variation

of 0 with the hole diameter was found to be invariant. Thus,

Figure 23 represents a useful tool in the analysis of the two

hole tension strip with the edge constraints presented in the

beginning of this section. The values of all computed

I factors for all of the models run are presented in Tables II,

II, and IV.

It is interesting to note the compression of the

curves at the higher pitch ratios, at crack ratios above 0.5.

To analyze this phenomena, for a hole diameter of 0.25

inches, two .-Iditional curves with a pitch ratio of 3.5 and

4.5 were created. These curves were plotted with the previous

0 curves to create Figure 24. This shows that there is a
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compression in the 0 curves at the location mentioned

3 earlier. It was postulated that this was a "net area" effect

relating to the rigid edge distance criteria of the original

problem. For a given diameter hole, the pitch was varied as a

ratio of the diameter, but the edge distances remained

constant at three diameters. Therefore, as the crack ratio

grows towards 0.9, the reduction in net area as a percentage

of the total original pre-cracked net area, is higher for the

higher pitch ratios. The effects of this would be increased

as the crack grew in length. To examine this trend, the a

factors from Figure 23 were modified to calculate 0 based on

I net stress, anet' instead of far field stress, a, and then

calculate 0net as follows1
Inet " KI/(anet (na) /2) (47)

3 The results are shown in Figure 25. Both 0 and 0 net are

plotted against crack ratio. The plot shows that at crack

I ratios above 0.5, as the 0 factors based on far field stress

began to increase uniformly in value, the 0net factors based

on net stress cross over as the effects of pitch ratio seem

3 to reverse. It is further postulated by the author, that if

the net section effects were subtracted from the final 0

curves of Figure 23, a family of $ curves would thus be

created with the same generic trends of Figure 23, but

without the collapse of curves at the higher pitch ratios

I
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above a crack ratio of 0.5

3 It can be seen from Figure 23 that for crack ratios

up to 0.5, the effects of the initial hole are dominate, with

the influence of the hole decreasing with increased distance

from the hole. At a crack ratio of 0.5, the crack begins to

approach the second hole and the value of 0 now increases

with the decrease in distance to the second hole. So all of

the items of the initial problem can be seen in the final 0

I curves of Figure 23. The first hole is seen in the high

initial values of 0, with the effects of the hole decreasing

with distance. The 0 value are at a minimum approximately

half way between the holes, with the effects of the second

hole seen as the 0 values increasing with the crack tip

1 approaching the second hole. The effects of the edge

distances are seen in the "collapse" of the 0 curves at high

pitch and crack ratios. All of this is in addition to the

obvious effects of pitch and crack ratio as a function of

hole diameter.

I
I
U
I
I
U
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Table II. Parametric Study 0 Factors for Pitch Ratio - 3 Dia

Crack Ratio Odia-0.50 Odia-0.33 Odia-0.25

.1 2.07 2.07 2.07

.2 1.62 1.62 1.62

.3 1.43 1.43 1.43

1.4 1.34 1.34 1.34

.5 1.31 1.31 1.31

.6 1.31 1.31 1.31

.7 1.34 1.35 1.34

.8 1.46 1.46 1.48

I.9 1.90 1.90 1.90

I7



Table III. Parametric Study 13 Factors for Pitch Ratio - 4 Dia

Crack Ratio 13dia-O.50O dia-0.33 13dia-O.25

.1 1.74 1.74 1.74

.2 1.38 1.37 1.38

.3 1.25 1.25 1.25

1.4 1.20 1.20 1.20

U.5 1.19 1.19 1.19

.6 1.20 1.20 1.20

1.7 1.24 1.25 1.24

.8 1.34 1.35 1.34

1.9 1.70 1.73 1.68
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Table IV. Parametric Study 0 Factors for Pitch Ratio - 5 Dia

Crack Ratio Odia-0.50 Odia-0.33 0dia-0.25

.1 1.55 1.55 1.55

.2 1.26 1.25 1.25

.3 1.17 1.17 1.17

.4 1.14 1.14 1.14

.5 1.15 1.15 1.15

.6 1.18 1.18 1.18

.7 1.23 1.23 1.26

.8 1.32 1.32 1.34

1 .9 1.58 1.58 1.58

I

72



i
I

VIII. Parametric Study Applicationi
i This section's purpose is to present an example of how

the fracture mechanics engineer in the aircraft industry might

* apply the results of the parametric study undertaken in the

last section. The example outlined here is hypothetical and not

* intended to limit the potential usage of the stress intensity

data in the last section.

It will be assumed that there is a requirement for a

particular structure, in this case a machined fitting made out

of 7075-T6 aluminum plate (with E=10300 KSI, and v-0.33). The

fitting is to have a service life of 500 flight hours. It will

be further assumed that the only significant load on the

fitting is aircraft pressurization, and therefore the fitting

I will experience one load cycle per flight. The average flight

for this airplane will be one hour.

if To establish the Damage Tolerance of this part under

current Air Force requirements [71, this analysis will qualify

I the fitting as being "slow crack growth" structure, and

therefore it must be shown that two service lifetimes of slow

crack growth exist.

Though fracture mechanics and stress intensity factor

calculations are based on theory, fatigue crack growth is

i empirical. Crack growth for a particular stress cycle is a

function of the change in stress intensity and stress ratio

(the minimum stress divided by the maximum stress in a cycle)

i
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for a given material. This thesis will not cover the theory of

crack growth analysis, nor of material fracture properties.

However, it is important for the reader to understand that for

a given material, the crack growth increment for a given stress

cycle is dependent on the stress intensity at the time of load

application.

Many software codes have been written to do fatigue

crack growth analysis (CRACKS, CRKGRO, FLAGRO, etc.), and they

all share certain traits in common. After input of basic

material fracture properties for the material being used, the

stress spectrum is input. Then the algorithm to calculate the

stress intensity factor throughout the analysis is selected.

(The stress intensity factor will vary with the crack length

I and applied stress) Most crack growth codes have a library of

predefined crack stress intensity solutions to choose from.

Most codes also allow the user to input a "look-up" table of

stress intensity data vs crack length. The look-up data is

usually in the form of a a factor, as calculated in the last

I section. The format of the stress spectrum is usually written

as

a max , amin' cycles (48)
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where

I amax - maximum stress

a min - minimum stress

cycles -number of repetitionsI
The information of equation (48) can be repeated to create

layers in a complex stress spectrum. The spectrum applied in

this analysis is very simple as it has only one cycle per

flight. Stress analysis of the fitting indicated an applied

3 stress of 30 KSI under fully pressurized conditions, with 0 KSI

unpressurized. Therefore the stress spectrum for one flight

3 would be

a max 30 KSI (49)

a min =0 KSI

I
cycles - 1

Most engineers attempt to compile a spectrum into a "block"

I that would represent many flights, and then repeat the block

until the service life requirements are met. This analysis

defines 100 flights to be a block, therefore one block

3 represents 100 flight hours of life. Two service lives of slow

crack growth must be shown before critical crack length is

3 reached. Critical crack length is either loss of a part, or

when the crack length grows to a point where the local stress

intensity factor for amax exceeds the material fracture

I
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toughness. (This thesis will also not cover the Air Force

I residual strength requirements) To achieve two lifetimes of

slow crack growth, an assumed initial crack must not grow to

critical crack length before 1000 flight hours.

In this example, the fatigue crack growth computer

program NASA/FLAGRO (15J was used. This was also the source for

3 the calculations of the Shivakumar solution used in section

VII. The built in material fracture data for 7075-T6 aluminum,

and a constant spectrum of 0 - 30 KSI was used for all versions

3 of this analysis.

Three approaches were taken in the analysis of the

3 fitting. It was assumed the critical crack location was a

through the thickness flaw emerging from a fastener hole, with

a geometry as shown in Figure 19. The fitting has 0.25 inch

3 fastener holes with a hole separation (pitch) of four diameters

(1.0 inch in this case). The initial flaw sizes are dictated by

3 the Air Force, and vary by type and location. The size is

determined by the largest "rogue flaw" that could be induced in

I the fitting during manufacture, assembly, or service use that

could not be detected by routine non-destructive inspections

(NDI) with a 90 percent probability of detection, and a 95

3 percent confidence. It was assumed here that the local NDI was

not very good, and that an initial through the thickness crack

3 size of 0.075 inches would be used. This is convenient as this

translates into a crack ratio of 0.1 (using the definitions of

the previous section).

I
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The fitting was analyzed using three different

approaches to the calculation of the stress intensity factor as

a function of crack length and applied stresses. The first

method used the Bowie solution approach to idealize the fitting

as a hole in an infinite plate. The spectrum was applied to the

initial flaw and grown to a length of 0.75 inches which

represents the length required to "break through" into the

second hole. The second method used the Shivakumar solution

assuming a row of holes in an infinite plate. This analysis

also terminated upon the crack reaching the second hole. The

last method involved the 0 factors derived in the last section.

The 0 factors were placed in a 0 look-up table as a function of

crack length. Stress intensity factors were then calculated for

a given crack length, a, and a given applied stress, a, as

follows

KI - (na) / 2 0 (50)

The results of the three analysis are shown in Figure 26. It

can be seen that the Bowie solution method was the least

conservative, as it did not consider the second hole, or the

tension strip edge effects. The Shivakumar solution method was

the second least conservative as it did not consider the finite

edge effects. Both the Bowie and Shivakumar methods grew the

crack until it reached the second hole. The last method, or "0

look-up" table method was the most conservative. The crack did
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not reach the second hole as the local crack tip stress

3 intensity factor reached the material fracture toughness at a

crack length of only 0.66 inches. The 0 look-up method also was

the only one unable to show 1000 hours of slow crack growth,

thus not meeting the design requirements.

From this simple example, it can be seen how detailed

analysis through the a look-up table method enables an engineer

to analyze detailed geometry beyond the scope of the common K1

solutions found in most fatigue crack codes. In this case, it

3 would have been unconservative to ignore the effects of the

second hole, and the edge effects. The output from the

3 NASA/FLAGRO program are included in Appendix E.

II
I
I
I
I
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IX. Conclusions

Application of the Boundary Element Method to

structures problems is just beginning to become popular in

the aircraft industry. Traditional Finite Element Methods are

still the predominate technique used. However, the Finite

* Element Method is expensive in both manpower and computer

costs, and cost saving alternatives are always being sought.

The Fictitious Stress Method, presented in this

3 thesis, is shown to correlate well with both analytical and

FEM solutions. The BEM was shown to work well for the

parametric study of Section VII. A complicated fracture

mechanics problem with no analytical solution was solved for

I various geometry, with the results displayed as a family of

I a-curves in Figure 23. These curves in themselves are

important as they represent useful Stress Intensity Factor

correction factors for the various geometric configurations

analyzed in Section VII.

I It has been shown herein that BEM is an acceptable

method for fracture mechanics analysis and can be used in

fatigue crack growth predictions for Air Force Durability and

Damage Tolerance Analysis (DADTA). The analysis in Section

VIII shows how easily the results of the BEM work in Section

I VII could be applied to a "real" design problem and prevent

unconservative structural life predictions.
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One possible source for additional work is in the

I area of FEM and BEM combined in a single solution. This might

prove to be the best of both worlds with a fine grid FEM

model near the crack tip, and a coarse BEM definition of the

3 external boundaries of a problem. Additional study should be

done to see if the BEM/FEM combined analysis offers

3 advantages in actual applications to each method used

separately.

The question of increased efficiency is a more

difficult one. Though dramatic reductions in degrees of

freedom are shown for comparable accuracy of analysis, final

CPU time is not always improved. Since the CPU time is

proportional to the square of the Root Mean Square (RMS)

number of active columns multiplied by the total degrees of

3 freedom (DOF), the BEM would have a CPU time advantage for

smaller problems where the DOF factor would dominate the

3 squared RMS term. This indicates that the BEM is

computationally more efficient for problems up to a certain

I size. Even at problem sizes of 13858 DOF the BEM still has a

CPU time advantage of 1.7 (reference Section III).

It should also be noted that the BEM program used in

I this thesis utilized only single precision accuracy which on

the VAX computer provides six significant digits. This helped

i improve the BEM computer efficiency and still obtain the

excellent correlation to the FEM and analytical results

documented in this thesis.

I
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It is therefore concluded that for the structural

fracture mechanics problems analyzed in this thesis, the BEM

accurately derived Stress Intensity Factors for fracture

analysis, and produced a minimum computational efficiency

improvement of 1.7 over traditional FEM.

i
i
I
I
i
i
I
I
I

I
I
I
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Appendix A: Computer Implementation

The source for the computer program used in this

study was a FORTRAN program, TWOFS, for the fictitious stress

boundary element method published by Crouch and Starfield

[4]. The version used in this study was converted to the

Microsoft BASIC computer language for ease of implementation

on PC class computers. Upon initiation of actual

calculations, it was decided to port the program up to a

Digital VAX computer for speed purposes, so limited code

changes were made to run under VAX BASIC 3.1. Additional

small changes were made to facilitate post processing by

I outputting desired calculations to an external file. The VAX

3 Basic version of TWOFS was labeled TWOFS99. The final work

was done on a Digital VAX 8800 running the VMS (V4.7)

operating system. The average BEM model consisting of 300

elements (600 by 600 matrix of influence coefficients) took

approximately 25 minutes of CPU time. The CPU comparisons

made to the MSC/NASTRAN finite element program were done on a

Digital VAX 8350 computer as it was the only machine set up

to run NASTRAN.

The flow of the program TWOFS99 is identical to the

original FORTRAN TWOFS code. The sizes of the matrices were

increased to allow larger problems. The TWOFS99 input was

modified to allow for the BEM model to be read from a disk
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file. This was particularly important as the final tension

strip parametric analysis required over one hundred models to

be built, run and analyzed. The models were constructed by an

independent VAX Basic program, CHOLE, and written to disk in

the format required by TWOFS99. Aside from the normal TWOFS

output, which was also written to a disk file, a third file

was created by TWOFS99 of unlabeled final stress results. A

third VAX Basic computer program, TWOFS99_EX, extracted

necessary stress data from the post processing file created

by TWOFS99 and computed a value for the stress intensity

factor based on a regression fit technique. This allowed for

* a great degree of mechanization in the analysis process.

A. Fictitious Stress Method Program (TWOFS99)

The input file for TWOFS99 defines the geometry of

the problem, along with the necessary boundary conditions.

The program first reads in values for NUMBS, NUMOS, KSYM, PR

and E. NUMBS defines the number of straight line segments

which will be input. NUMOS defines the number of additional

segments to establish data points for displacement and stress

calculations within the body to be analyzed. KSYM is a code

to take advantage of any lines of symmetry in a model by

calculating image elements as mirrored across the line of

symmetry so that their effects are included in the final

results. KSYM equal to one implies no symmetry exists, which
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was used primarily in this study. KSYM equal to two implies

I symmetry about the y axis at a line x-XSYM. KSYM equal to

three implies symmetry about the x axis at a line y-YSYM.

And KSYM equal to four implies two axis of symmetry about

x=XSYM, y-YSYM. If symmetry is requested, the value of XSYM

and, or YSYM is input. PR is the Poison's Ratio and E is the

n Young's Modulus for the material for the problem. The field

stresses are next input as PXX, PYY and PXY. All input must

be in consistent units. All input is echoed in the output

* file.

At line 460 in the code, a loop is entered from 1 to

NUMBS. For each iteration of the loop, values for ZNUM, XBEG,

YBEG, XEND, YEND, KODE, BVS and BVN are input. XBEG, YBEG,

XEND and YEND define the x and y co-ordinates for the

n beginning and end of the current line segment. ZNUM

subdivides the current line segment into that many equal

length boundary element segments. BVS and BVN are the

boundary conditions for all of the boundary elements defined

I for the current line segment, in the shear and normal local

n o-ordinates of the elements respectively. KODE defines if

BVS and BVN are displacement or stress boundary conditions.

Remember, it is allowable to mix them as indicated in [4).

KODE equal to one means both are stresses, two means both are

n displacements, three means a shear displacement with a normal

stress, and four is a shear stress with a normal

displacement. Upon completion of the loop, all input of the

8
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data for the definition of the boundary elements and boundary

I conditions is completed.

At line 690 in the code, a similar loop is entered

from 1 to NUMOS. Here the variables EXTERNL(N,i), i-l to 4,

and NUMMTX(N) are read. The data for the interior points are

stored in matrices to facilitate changes made to output

formats. In order,the XBEG, YBEG, XEND, YEND, and NUMPD are

input and placed in the EXTERNL and NUMMTX arrays. XBEG,

YBEG, XEND and YEND are as for the boundary element line

3 segment definitions. NUMPD defines the number of straight

equally spaced points between and including XBEG, YBEG, XEND,

YEND to be included for displacement and stress calculations

after the fictitious stresses are solved for.

I Lines 1250 through 2000 make various calls to

* subroutines to calculate the influence coefficients for all

of the boundary elements, and assembles them into a matrix C.

Line 2020 calls a Gauss Elimination subroutine to solve for

the fictitious stresses which are stored in the matrix P.

UI Line 2100 enters a loop to calculate the unknown boundary

conditions at all of the boundary element midpoints. And,

finally, line 3060 is a loop to calculate influence

3I coefficients and the resulting stresses and displacements at

all of the interior data points.

Line 2920 begins a loop to store all stresses

computed at boundary element midpoints, along with the x

I value of the element midpoint. This data is written to a disk
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file for post processing in line 2965. The program TWOFS99 is

I listed in Appendix B.

B. Boundary Element Generation (CHOLE)i
This program was written specifically for the two

hole tension strip analysis. The boundary conditions for the

study were incorporated into the program. The user inputs a

problem title, hole diameter, hole spacing and crack length.

* The program divides the crack length into boundary elements

using the F.R. Harris refinement technique [8], and then

creates elements to model the remainder of the tension strip

boundary. The final result is a disk file in the format

required by TWOFS99 for analysis. The program CHOLE is listed

* in Appendix D.

3 C. Stress Intensity Factor Calculation (TWOFS99 EX)

I The assumptions used are to calculate the stress

intensity factor for a given problem by using the tension

stresses, a, normal to the line of the crack. The value of

* the stress intensity factor is calculated with the tension

stresses with the equationI
K I = a (2nr) 1/ 2  (42)

I
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file for post processing in line 2965. The program TWOFS99 is

I listed in Appendix B.

B. Boundary Element Generation (CHOLE)I
This program was written specifically for the two

hole tension strip analysis. The boundary conditions for the

study were incorporated into the program. The user inputs a

problem title, hole diameter, hole spacing and crack length.

The program divides the crack length into boundary elements

using the F.R. Harris refinement technique (8], and then

m creates elements to model the remainder of the tension strip

boundary. The final result is a disk file in the format

required by TWOFS99 for analysis. The program CHOLE is listed

m in Appendix D.

C. Stress Intensity Factor Calculation (TWOFS99 EX)

I The assumptions used are to calculate the stress

m intensity factor for a given problem by using the tension

stresses, a, normal to the line of the crack. The value of

* the stress intensity factor is calculated with the tension

stresses with the equationU
K 1 - a (2nr) 1 / 2  (42)
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All of the tension strip parametric study results were

i processed through TWOFS99_EX for KI calculations, and the

results presented in that section of this report. The program

TWOFS99_EX is listed in Appendix C.

i
i
i
i
I
i
i
1
i
i
i
i
i
i
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Appendix B: Computer Program TWOFS99I
This appendix contains the listings of the computer

program used for the boundary element analysis in this

thesis. The boundary element analysis program TWOFS99 was

basically extracted from Crouch and Starfield (Reference [4])

with changes to output a post processing file for TWOFS99_EX

to do regression analysis for KI predictions. The source

document program was written in FORTRAN, and that was

converted into BASIC. Also, the data matrix limits were

raised to analyze larger problems. The program TWOFS99 was

* compiled under VAX BASIC 3.1.

U 10 REM BOUNDARY ELEMENT PROGRAM TWOFS 5 OCT 85
20 REM MODIFIED FOR LARGE MODELS FOR VAX
30 REM
32 DIM C(600,600),B(600),P(600)
40 DIM XM(300),YM(300),A(300),

COSBET(300),SINBET(300),KOD(300)
50 DIM EXTRNL(300,4),NUMMTX(300),OUTPT(300,10)
60 REM
70 REM PRINT"****************************************"
80 REM PRINT" "
90 REM PRINT" BOUNDARY ELEMENT PROGRAM "
100 REM PRINT" "

I 11PIN"0 REM PRINT"*****************************************"10 REM
120 REM PRINT" "
130 REM PRINT" "
132 REM INPUT "ENTER INPUT FILE NAME ",QIN$
134 REM INPUT "ENTER OUTPUT FILE NAME ",QOUT$
136 OPEN "QIN" FOR INPUT AS #1
138 OPEN "QOUT" FOR OUTPUT AS #2
139 OPEN "QMAT" FOR OUTPUT AS #3
140 INPUT #1,TITLE$
150 INPUT #1,NUMBS,NUMOS,KSYM,PR,E
160 IF KSYM-1 THEN GOTO 200
170 IF KSYM-2 THEN GOTO 210
180 IF KSYM-3 THEN GOTO 240
190 IF KSYM-4 THEN GOTO 260

I
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200 GOTO 300
210 INPUT #1,XSYM
220 GOTO 300
240 INPUT #1,YSYM
250 GOTO 300
260 INPUT #1,XSYM
280 INPUT #1,YSYM
290 REM
300 REM
310 INPUT #1,PXX
320 INPUT #1,PYY
330 INPUT #I,PXY
340 REM
360 CNST-I.0/(4.0*PI*(1.0-PR))
370 COND-(1.0+PR)/E
380 PR1-I1.0-2.0*PR
390 PR2-2.0*(I.0-PR)
400 PR3-3.0-4.0*PR
410 REM
415 REM PRINT" "
420 REM PRINT" DEFINE LOCATIONS, SIZES, ORIENTATIONS AND

BOUNDARY CONDITIONS "
430 REM PRINT" OF BOUNDARY ELEMENTS
IPRINT"435 REM PRINT" "

440 REM
450 NUMBE-0
460 FOR N-1 TO NUMBS
470 INPUT #I,ZNUM,XBEG,YBEG,XEND,YEND,KODE,BVS,BVN
480 XD-(XEND-XBEG)/ZNUM
490 YD-(YEND-YBEG)/ZNUM
500 SW-SQR(XD*XD+YD*YD)
510 REM

520 FOR NE-i TO ZNUM
530 NUMBE-NUMBE+1
540 M-NUMBE
550 XM(M)-XBEG+.5*(2.0*NE-1.0)*XD
560 YM(M)-YBEG+.5*(2.0*NE-1.0)*YD
570 A(M)-.5*SW
580 SINBET(M)-YD/SW
590 COSBET(M)-XD/SW
600 KOD(M)-KODE
610 MN-2*M
620 MS-MN-i
630 B(MS)-BVS
640 B(MN)-BVN
650 NEXT NE
655 NEXT N
660 REM PRINT" "

670 REM PRINT" INPUT OF EXTERNAL ELEMENTS"
680 REM PRINT" "

690 FOR N-I TO NUMOS
700 INPUT#1,EXTRNL(N,1),EXTRNL(N,2),
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EXTRNL(N,3),EXTRNL(N,4),NUMMTX(N)
710 NEXT N
720 PRINT #2,TITLE$
730 PRINT #2, "NUMBER OF STRAIGHT LINE SEGMENTS TO DEFINE

BOUNDARY ",NUMBS
740 PRINT #2,"NUMBER OF NON BOUNDARY POINTS TO CALCULATE

RESULTS AT ",NUMOS
750 IF KSYM-1 THEN GOTO 780
760 IF KSYM-2 THEN GOTO 800
770 IF KSYM-3 THEN GOTO 820 ELSE GOTO 840
780 PRINT #2," " \ PRINT #2,"NO SYMMETRY CONDITIONS

IMPOSED"
790 GOTO 850
800 PRINT #2," " \ PRINT #2,"THE LINE X - XS - ";XSYM;" IS

A LINE OF SYMMETRY"
810 GOTO 850
820 PRINT #2," " \ PRINT #2,"THE LINE Y - YS - ";YSYM;" IS

A LINE OF SYMMETRY"
830 GOTO 850
840 PRINT #2," \ PRINT #2,"THE LINES X - XS - ";XSYM;"

AND Y - YS - ";YSYM;" ARE LINES OF SYMMETRY"
850 REM
860 PRINT #2," " \ PRINT #2,"POISSON'S RATIO - ";PR
870 PRINT #2," YOUNG'S MODULUS - ";E
880 PRINT #2," " \ PRINT #2,"XX-COMPONENT OF FIELD STRESS -

";PXX

890 PRINT #2,"YY-COMPONENT OF FILED STRESS - ";PYY
900 PRINT #2,"XY-COMPONENT OF FIELD STRESS - ";PXY
910 PRINT #2," "
920 PRINT #2,"BOUNDARY ELEMENT DATA" \ PRINT #2," "
930 PRINT #2,"ELEMENT","KODE","X CENTER","Y CENTER"
940 FOR I-1 TO NUMBE
950 PRINT #2,I,KOD(I),XM(I),YM(I)
960 NEXT I
970 PRINT #2," "
980 PRINT #2,"ELEMENT","LENGTH","ANGLE","US OR SIGMA-S","UN

OR SIGMA-N"
990 FOR M-i TO NUMBE
1000 MSIZE-2.0*A(M)
1005 IF COSBET(M)-0.0 AND SINBET(M)>0.0 THEN ANGLE-90 GOTO
1020
1007 IF COSBET(M)-0.0 AND SINBET(M)<0.0 THEN ANGLE-270 \

GOTO 1020
1010 ANGLE-180 * ATN(SINBET(M)/COSBET(M))/PI
1015 IF ANGLE<0 THEN ANGLE-ANGLE+180
1020 PRINT #2,M,MSIZE,ANGLE,B(2*M-1),B(2*M)
1030 NEXT M
1040 REM PRINT" "

1050 REM PRINT" ADJUST STRESS BOUNDARY VALUES TO ACCOUNT
FOR INITIAL STRESSES "

1060 REM PRINT" "
1070 FOR N-1 TO NUMBE

I
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1080 NN-2*N
1090 NS-NN-1
1100 COSB-COSBET(N)
1110 SINB-SINBET(N)
1120 SIGS-(PYY-PXX)*SINB*COSB+PXY*(COSB*COSB-SINB*SINB)
1130 SIGN-PXX*SINB*SINB-2.0*PXY*SINB*COSB+PYY*COSB*COSB
1140 IF KOD(N)-I THEN GOTO 1170
1150 IF KOD(N)-2 THEN GOTO 1240

1160 IF KOD(N)-3 THEN GOTO 1200 ELSE GOTO 1230
1170 B(NS)-B(NS)-SIGS
1180 B(NN)-B(NN)-SIGN
1190 GOTO 1240
1200 REM
1210 B(NN)-B(NN)-SIGN
1220 GOTO 1240
1230 B(NS)-B(NS)-SIGS
1240 NEXT N
1250 REM PRINT"
1260 REM PRINT"COMPUTE INFLUENCE COEFFICIENTS AND SET UP

SYSTEM OF ALGEBRAIC EQUATIONS"
1270 REM PRINT" "

1280 REM
1290 FOR I-1 TO NUMBE
1295 REM PRINT" " \ REM PRINT" FOR ELEMENT ";I
1300 IN-2*I
1310 IS-IN-1
1320 XI-XM(I)
1330 YI-YM(I)
1340 COSBI-COSBET(I)
1350 SINBI-SINBET(I)
1360 KODE-KOD(I)
1370 REM
1380 FOR J-1 TO NUMBE
1390 JN-2*J
1400 JS-JN-1
1410 REM CALL INITL
1415 GOSUB 10000
1420 XJ-XM(J)
1430 YJ-YM(J)
1440 COSBJ-COSBET(J)
1450 SINBJ-SINBET(J)
1460 AJ-A(J)
1470 REM CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,SINBJ,+I)
1480 QXI-XI \ QYI-YI \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ \ QCOS-COSBJ
1490 QSIN-SINBJ \ QQ-1
1500 GOSUB 15000
1510 IF KSYM=1 THEN GOTO 1690
1520 IF KSYM-2 THEN GOTO 1550
1530 IF KSYM-3 THEN GOTO 1580 ELSE GOTO 1610
1540 REM
1550 XJ-2.0*XSYM-XM(J)
1560 REM CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
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1562 QXI-XI \ QYI-YI \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ \ QCOS-COSBJ
1564 QSIN--SINBJ \ QQ--1 \ GOSUB 15O0OI1570 GOTO 1690
1580 YJin2.O*YSYM-~YM(J)
1590 REM CALL COEFF(XI ,YI ,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
1592 QXI-XI \ QYI-YI \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ \ QCOS---COSBJ
1594 QSIN-SINBJ \ 00--l \ GOSUB 15000
1600 GOTO 1690
1610 XJ-2.0*XSYM-XM(J)I1620 REM CALL COEFF(XI,YI,XJ,YJ,AJ,(,'OSBJ,-SINBJ,-1)
1622 QXI-XI \ QYI-YI \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ \ QCOS-COSBJ
1624 QSIN--SINBJ \ QQ--1 \ GOSUB 15000I1630 XJ-XM(J)
1640 YJ-2.0*YSYM-YM(J)
1650 REM CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
1652 QXI-XI \ QYI-YI \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ\

QCOS--COSBJ
1654 QSIN-SINBJ \ QQ--1 \ GOSUB 15000
1660 XJ-2.0*XSYM-XM(J)

1672 QXIXI \QYIYI \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ

1670 REM-SIB CAL COEF(X1Y\ XJJJ,-OSB,15000+1

1690 REM
1790 I RODHN OO14I1710 IF KODE-2 THEN GOTO 1840

1720 IF KODE-3 THEN GOTO 1860 ELSE GOTO 1920
1730 REM
1740 C(IS,JS)-(SYYS-SXXS)*SINBI*COSBI

1750 C( ISJN)-( SYYN-SXXN) *SINBI*COSBI
+SXYN*(COSBI*COSBI-SINBI*SINBI)

1760 C(IN,JS)-SXXS*SINBI*SINBI
-2. 0*SXYS*SINBI*COSBI+SYYS*COSBI*COSBI

1770 C(IN,JN)-SXXN*SINBI*SINBI£ -2. 0*SXYN*SINBI*COSBI+SYYN*COSBI*COSBI
1780 GOTO 1970
1790 REM
1800 C(IS,JS)-UXS*COSBI+UYS*SINBI
1810 C(IS,JN)-UXN*COSBI+UYN*SINBI
1820 C(INoJS)m-UXS*SINBI+UYS*COSBI
1830 C(IN,JN)in-UXN*SINBI+UYN*COSBII1840 GOTO 1970
1850 REM
1860 C(IS,JS)-UXS*COSBI+UYS*SINBII 1870 C(IS,JN)-UXN*COSBIi.UYN*SINBI
1880 C(IN,JS)-SXXS*SINBI*SINBI

-2 .0*SXYS*SINBI*COSBI+SYYS*COSBI*COSBI
1890 C(IN,JN)-SXXN*SINBI*SINBI

-2. 0*SXYN*SINBI*COSBI4+SYYN*COSBI*COSBI
1900 GOTO 1970
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1910 REM
1920 C(IS,JS)-(SYYS-SXXS)*SINBI*COSBI

+SXYS*(COSBI*COSBI-SINBI*SINBI)
1930 C(IS,JN)-(SYYN-SXXN)*SINBI*COSBI

+SXYN*(COSBI*COSBI-SINBI*SINBI)
1940 C(IN,JS)--UXS*SINBI+UYS*COSBI
1950 C(IN,JN)--UXN*SINBI+UYN*COSBI
1970 NEXT J
1975 NEXT I
1980 REM PRINT" "
1990 REM PRINT" SOLVE SYSTEM OF ALGEBRAIC EQUATIONS "

2000 REM PRINT" "

2010 N-2*NUMBE
2020 REM CALL SOLVE(N)
2030 GOSUB 20000
2040 REM PRINT"
2050 REM PRINT" COMPUTE BOUNDARY DISPLACEMENTS AND

STRESSES "

2060 REM PRINT"U 2069 PRINT #2,"
2070 PRINT #2," DISPLACEMENTS AND STRESSES AT BOUNDARY

ELEMENT MIDPOINTS"
2080 PRINT #2," "

2090 PRINT #2,"ELEMENT","UX","UY","US","UN"
2092 PRINT #2,"SIGXX SIGYY SIGXY SIGS

SIGN SIGT"
2100 FOR I-1 TO NUMBE
2110 XI-XM(I)
2120 YI-YM(I)
2130 COSBI-COSBET(I)
2140 SINBI-SINBET(I)

2150 REM
2160 UX-0.0
2170 UY-0.0
2180 SIGXX-PXX
2190 SIGYY-PYY
2200 SIGXY-PXY
2210 REM
2220 FOR J-1 TO NUMBE
2230 JN-2*J
2240 JS-JN-1
2250 REM CALL INITL
2260 GOSUB 10000
2270 XJ-XM(J)
2280 YJ-YM(J)
2290 AJ-A(J)
2300 COSBJ-COSBET(J)
2310 SINBJ-SINBET(J)
2320 REM CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,SINBJ,+)
2330 QXI-XI \ QYI-YI \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ \ QCOS-COSBJ
2340 QSIN-SINBJ \ QQ-1 \ GOSUB 15000
2350 IF KSYM-1 THEN GOTO 2650
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2360 IF KSYM-2 THEN GOTO 2390
2370 IF KSYM-3 THEN GOTO 2450 ELSE GOTO 2510I2380 REM
2390 XJ-2.0*XSYM-XM(J)
2400 REM CALL COEFF(XI ,YI ,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
2410 QXI-XI \ QYI-YI \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ \ QCOS-COSBJ

2420 QSIN--SINBJ \ QQ-1 \ GOSUB 15000
2430 GOTO 2650
2440 REMI2450 YJ-2.0*YSYM-YM(J)
2460 REM CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
2470 Qxi-xi \ QYI-YI \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ\

QCOS--COSBJ
2480 QSIN-SINBJ \ QQ--1 \ QQ--1 \ GOSUB 15000
2490 GOTO 2650
2500 REMI 2510 XJin2.0*XSYM-X4(J)
2520 REM CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
2530 QXI-XI \ QYI-YI \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ \ QCOS-COSBJ
2540 QSIN--SINBJ \ QQ--1 \ GOSUB 15000£2550 XJ:XM(J)

2570REMCALL COEFF(XI ,YI ,XJ,YJ,AJ,-COSBJ,SINBJ,-1)I2580 QXI-XI \ QYI-YI \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ \ QCOS--COSBJ
2590 QSIN-SINBJ \ QQ--1 \ GOSUB 15000
2600 XJ-2.o*XSYM-XM(J)U2610 REM CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,-SINBJ,-1)
2620 QXI-XI \ QYI-YI \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ\

QCOS--COSBJU2630 QSIN--SINBJ \ QQ-1 \ GOSUB 15000
2640 REM
2650 REM
2660 REMI2670 UX-UX+UXS*P(JS)+UXN*P(JN)
2680 UY-UY+UYS*P(JS)+UYN*P(JN)
2690 SIGXX-SIGXX+SXXS*P(JS)+SXXN*P(JN)U2700 SIGYY-SIGYY+-SYYS*P(JS)+SYYN*P(JN)
2710 SIGXY-SIGXY+SXYS*P(JS)+SXYN*P(JN)
2720 RE
2730 NEXT J
2740 REM
2750 US-UX*COSBI+UY*SINBI
2760 UNm.-1.0*UX*SINBI+UY*COSBII2770 SIGS-(SIGYY-SIGXX)*SINBI*COSBI

+SIGXY*(COSBI*COSBI-~SINBI*SINBI)
2780 SIGN-SIGXX*SINBI*SINBI

-2. 0*SIGXY*SINBI*COSBI+SIGYY*COSBI*COSBI
2790 SIGT-SIGXX*COSBI*COSBI

+2. 0*SIGXY*SINBI *COSBI+SIGYY*SINBI *SINBI
2800 REMI2810 OUTPT(I,1)-UX

2820 OUTPT(I,2)-UY
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2830 OUTPT(I,3)-US
2840 OUTPT(I,4)-UN
2850 OUTPT(I,5)-SIGXX
2860 OUTPT(I,6)-SIGYY
2870 OUTPT(I,7)-SIGXY
2880 OUTPT(I,8)-SIGS
2890 OUTPT(I,9)-SIGN
2900 OUTPT(I,10)-SIGT
2905 REM PRINT"OUTPUT FOR ELEMENT ";I;" COMPLETE"
2910 NEXT I
2912 A$-"#.###^^ " \ A$-A$+A$+A$+A$+A$+A$
2920 FOR I-i TO NUMBE
2930 PRINT #2,I,OUTPT(I,1),OUTPT(1,2),OUTPT(I,3),OUTPT(I,4)
2935 PRINT #2 USING A$;OUTPT(I,5),OUTPT(I,6),OUTPT(I,7),

OUTPT(I,8),OUTPT(I,9),OUTPT(I,10)
2936 PRINT #2, "

2940 NEXT I
2950 REM THIS IS THE BEM ELEMENT DISP-STRESS MATRIX OUTPT TO

FILE
2960 MAT PRINT #3 , OUTPT
2965 MAT PRINT #3 , XM \ CLOSE #3
2990 REM PRINT" "

3000 REM PRINT" COMPUTE DISPLACEMENTS AND STRESSES AT
SPECIFIED POINTS IN THE BODY"

3010 REM PRINT" "
3020 IF NUMOS <- 0 THEN GOTO 3910
3030 PRINT #2," - \ PRINT #2," "
3040 PRINT #2," DISPLACEMENTS AND STRESSES AT SPECIFIED

POINTS IN THE BODY"
3042 PRINT #2," " \ PRINT #2,"POINT","X COORD","Y

COORD","UX", "UY"

3045 PRINT #2," #"SIGXX","SIGYY"f"SIGXY" \ PRINT #2,"
3050 NPOINT-0
3060 FOR N-i TO NUMOS
3070 XBEG-EXTRNL(N,1)
3080 YBEG-EXTRNL(N,2)
3090 XEND-EXTRNL(N,3)
3100 YEND-EXTRNL(N,4)
3110 NUMPB-NUMMTX(N)
3120 NUMP-NUMPB+1
3130 DELX-(XEND-XBEG)/NUMP
3140 DELY-(YEND-YBEG)/NUMP
3150 IF NUMPB > 0 THEN NUMP-NUMP+1
3160 IF (DELX^2+DELY^2) - 0 THEN NUMP-1
3170 REM
3180 FOR NI-i TO NUMP
3190 XP-XBEG+(NI-1)*DELX
3200 YP-YBEG+(NI-1)*DELY
3210 REM
3220 UX-0.0
3230 UY-0.0
3240 SIGXX-PXX
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3250 SIGYY-PYY
3260 SIGXY-PXYI3270 REM
3280 FOR J-1 TO NUMBE
3290 JN-2*J
3300 JS-JN-1
3310 REM CALL INITL
3320 GOSUP 10000
3330 XJ-XM(J)I3340 YJ-YM(J)
3350 AJ-A(J)
3360 REM
3370 IF SQR((XP-XJ)^2+(YP-YJV^2) < (2.0*AJ) THEN GOTO
3880
3380 REM
3390 COSBJ-COSBET( J)

3400 SINBJ-SINBET(J)
3410 REM CALL COEFF(XP,YP,XJ,YJ,AJ,COSBJ,SINBJ,+1)
3420 QXI-XP \ QYI-YP \ QXJ-XJ \ QYJ-YJ \ OAJ-AJ \ QCOS-COSBJI3430 QSIN-SINBJ \ QQ-1 \ GOSUB 15000
3440 REM GOTO (840,810,820,830),KSYM
3450 IF KSYM-1 THEN GOTO 3750
3460 IF KSYM-2 THEN GOTO 3490
3470 IF KSYM-3 THEN GOTO 3550 ELSE GOTO 3610
3480 REM
3490 XJ-2.0*XSYM-XM(J)U3500 REM CALL COEFF(XP,YP,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
3510 QXI-XP \ QYI-YP \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ \ QCOS-COSBJ
3520 QSIN--SINBJ \ QQ--1 \ GOSUB 15000I3530 GOTO 3750
3540 REM
3550 YJ-2.0*XSYM-YM(J)
3560 REM CALL COEFF(XP,YP,XJ,YJ,AJ,-COSBJ,SINBJ,-1)

3570 QXI-XP \ QYI-YP \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ \ QCOS--COSBJ
3580 QSIN-SINBJ \ QQ--1 \ GOSUB 15000
3590 GOTO 3750I3600 REM
3610 XJm2.0*XSYM-XM(J)
3620 REM CALL COEFF(XP,YP,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
3630 QXI-XP \ QYI-YP \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ \ QCOS-COSBJ
3640 QSIN--SINBJ \ QQ--1 \ GOSUB 15000
3650 XJ-XM(J)
3660 YJum2.0*YSYM-YM(J)I3670 REM CALL COEFF(XP,YP,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
3680 QXI-XP \ QYI-YP \ QXJ-XJ \ QYJ-YJ \ QAJ-AJ \ QCOS-COSBJ
3690 QSIN-SINBJ \ QQ--1 \ GOSUB 15000I3700 Xi-2.0*XSYM-XM(J)
3710 REM CALL COEFF(XP,YP,XJ,YJ,AJ,-COSBJ,-SINBJ,+1)
3720 QXI-XP \ QYI-YP \ QXJ=XJ \ QYJ=Yv- \ QAJ'=AJ \ QCOS--COSBJ
3730 QSIN--SINBJ \ QQ-i \ GOSUB 15000370UE
3740 REM
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3760 REM
3770 UX-UX+UXS*P(JS)+UXN*P(JN)I 3780 UY=rJY+UYS*P(JS)+rJYN*P(JN)
3790 SIGXX-SIGXX+SXXS*P(JS)+SXXN*P(JN)
3800 SIGYY-SIGYY+SYYS*P(JS)+SYYN*P(JN)
3810 SIGXY-SIGXY+SXYS*P(JS)+SXYN*P(JN)
3820 REM
3830 NEXT J
3840 REMI3850 NPOINT-NPOINT+1
3860 PRINT #2,NPOINT,XP,YP,UX,UY \PRINT *2,"

",SIGXX,SIGYY,SIGXY

3870 REM
3880 NEXT NI
3890 NEXT N
3900 REM390UE
3910 REM

4000 GOTO 25000I10000 REM SUBROUTINE INITL
10010 REM
10020 SXXS-0.0610030 SXXN-0.0
10040 SYYS-0.0
10050 SYYN-0.0
10060 SXYS-0.0I10070 SXYS-0.0
10080 SXYN-0.0
10090 REM
10100 UXs-0.0101UX-.
10130 UYN-0.0I10140 REM
10150 RETURN
15000 REM SUBROUTINE COEFF(X,Y,CX.CY,A,COSB,SINB,MSYM)I15010 REM
15020 X-QXI \ Y-QYI \ CX-QXJ \ CY-QYJ \ A-QAJ \COSB-QCOS
15030 SINB-QSIN \ MSYM-QQ
15040 REM
15050 COS2BinCOSB*COSB-SINB*SINB
15060 SIN2B=2.0*SINB*COSB
15070 REM1 15080 XBi(X-CX)*COSB+(Y-CY)*SINB
15090 YBm--1.0*(X-CX)*SINB+(Y-CY)*COSB
15100 REMI15110 R1S-(XB-A)*(XB-A)+YB*YB
15120 R2S-(XB+A)*(XB+A)+YB*YB
15130 FL1=.5*LOG(R1S)
15140 FL2-.5*LOG(R2S)
15150 FB2-CNST*(FL1.-FL2)
15160 IF YB <> 0 GOTO 15200
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15170 FB3-0
15180 IF ABS(XB) <A THEN FB3=CNST*PI
15190 GOTO 15210
15200 FB3--CNST*(ATN((XB+A)/YB).kATN((XB-A)/YB))
15210 FB1-YB*FB3+CNST*((XB-A)*FL1-(XB+A)*FL2)
15220 FB4-CNST*(YB/RIS-YB/R2S)
15230 FB5-CNST*((XB-A)/RS-(XB+A)/R2S)
15240 REM
15250 UXPS-COND*(PR3*COSB*FB1+YB*(SINB*FB2+COSB*FB3))I15260 UXPNmCOND*(-PR3*SINB*FB1-YB*(COSB*FB2-SINB*FB3))
15270 UYPS-COND*(PR3*SINB*FB1-YB*(COSB*FB2-SINB*FB3))
15280 UYPN-COND*(PR3*COSB*FB1-YB*(SINB*FB2+COSB*FB3))315290 REM
15300 SXXPS-FB2+PR2*(COS2B*FB2-SIN2B*FB3)

+YB* (COS2B*FB4+SIN2B*FB5)
15310 SXXPN-FB3-PR1*(SIN2B*FB2+COS2B*FB3)I +YB* (SIN2B*FB4-COS2B*FB5)
15320 SYYPS=FB2-PR2*(COS2B*FB2-SIN2B*FB3)

-~YB* (COS2B*FB4+SIN2B*FB5)3 15330 SYYPNinFB34+PR1*(SIN2B*FB2+COS2B*FB3)
-YB* (SIN2B*FB4-COS2B*FB5)

15340 SXYPS-PR2*(SIN2B*FB2.COS2B*FB3)
+YB* (SIN2B*FB4-COS2B*FB5)

15350 SXYPN-PR1*(COS2B*FB2-SIN2B*FB3)
-~YB* (COS2B*FB4+SIN2B*FB5)

15360 REMI15370 UXSmUXS+MSYM*UXPS
15380 UXN-UXN+UXPN
15390 UYS=UYS+MSYM*UYPSI15400 UYN-UYN+UYPN
15410 REM
15420 SXXS=SXXS+MSYM*SXXPS
15430 SXXN-SXXNiSXXPNI15440 SYYS-SYYS+MSYM*SYYPS
15450 SYYN-SYYN.SYYPN
15460 sxYS=SXYS+MSYM*SXYPS
15470 SXYN-SXYN+SXYPNI15480 REM

15490 RETURN
20000 REM SUBROUTINE SOLVE(N)
20010 REM
20020 NB-N-i
20030 FOR J-1 TO NBU20040 L-J+1
20050 FOR JJ=L TO N
20060 XM=C(JJJ)/C(JJ)I20070 FOR I-J TO N
20080 C(JJ,I)-C(JJ,I )-C(J,I )*XM
20090 NEXT I
20100 B(JJ)-B(JJ )-B(J)*XM201IETJ
20110 NEXT JJ
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20130 REM
20140 P(N)-B(N)/C(N,N)
20150 FOR J-1 TO NB
20160 JJ-N-J
20170 L-JJ+I
20180 SUM-0.0
20190 FOR I-L TO N
20200 SUM-SUM+C(JJ,I)*P(I)
20210 NEXT I
20220 P(JJ)-(B(JJ)-SUN)/C(JJJJ)
20230 NEXT J
20240 RETURN
25000 REM PRINT"END OF PROCESSING"
25300 CLOSE #1
25400 CLOSE #2
25401 END

I
I
I
I

I
I
3

I
I
I
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Appendix C: Computer Program TWOFS99_EXI
This appendix contains the listing for the program

TWOFS99_EX. This program used the stress versus x location

3 output from TWOFS99 and computed the stress intensity factor

asa function of distance, r, from the crack tip. The equation

3 used was

KI.Lim r-O[a (2nr) 1/2 (43)

The distribution of KI vs r was only taken as valid from a

distance five to ten percent of the crack length away from

the crack tip. The KI data was then fit through linear

regression analysis against r
2. The rational for selecting r2

3 over an r distribution is explained in the main body of the

text. The program inputs the name of the source file, the

5 crack length, the hole diameter, and hole pitch. The data

that fit in the acceptable distances from the crack tip are

U printed with calculated KI values, and the final regression

g fit for KI at r-O is printed. All KI values used to create

the a factors in the parametric tension strip study were

3 calulated by this program.

The program is written in VAX BASIC 3.1 and run on a

U VAX 8800.

I
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1 DIM OUTPT(300,10), XM(300),X(300),SIGYY(300),R(300),K(300)
10 PRINT " PROGRAM TWOFS99 EX" \ PRINT " "

20 REM TO EXTRACT DATA FROM OUTPT FILES
30 INPUT "ENTER OUTPT FILE NAME ROOT ";QIN$
31 INPUT "ENTER PITCH: ";PITCH
35 INPUT "ENTER CRACK LENGTH A : ";A
36 INPUT "ENTER HOLE DIA: ";DIA
37 PRINT "INPUT FILE ROOT: ";QIN$
38 PRINT "CRACK LENGTH A :";A \ PRINT "HOLE DIAMETER :";DIA
39 PRINT "PITCH- ";PITCH
40 QOUT$ - QIN$ + ".OUTPT EX"
42 QIN$ - QIN$ + ".OUTPT"
50 OPEN QIN$ FOR INPUT AS #1
55 OPEN QOUT$ FOR OUTPUT AS #2
56 PRINT #2," PROGRAM TWOFS99 EX" \ PRINT #2,"
57 PRINT #2," INPUT FILE • ";QIN$
58 PRINT *2," OUTPUT FILE • ";QOUT$
59 PRINT #2," " \ PRINT #2," CRACK LENGTH - ";A
60 PRINT #2,"HOLE DIAMETER :";DIA \ PRINT #2,"PITCH - ";PITCH

\PRINT #2,"
61 FOR I-1 TO 300
62 FOR J-1 TO 10
64 INPUT #1, OUTPT(I,J)
66 NEXT J
68 NEXT I
70 FOR I-1 TO 300
72 INPUT #1, XM(I)
74 NEXT I
76 XMIN - DIA/2 + A + 0.05*A \ XMAX - XMIN + 0.05*A
78 REM CHECK FOR LONG CRACK PROBLEM
80 IF XMAX < PITCH-(DIA/2) THEN GOTO 83
81 XMAX - PITCH-(DIA/2) \ XMIN -XMAX - ( XMAX - DIA/2 -

A)/2
82 PRINT#2,"LARGE CRACK WARNING"
83 PRINT #2,"XMIN (5% A) - ";XMIN \ PRINT #2,"XMAX (10% A) -

";XMAX

85 KOUNT-0.0
88 PRINT #2," \ PRINT #2,"
89 PRINT #2,"ELEMENT","X DIM","TIP RAD","TIP RAD -2","SIGMA

YY", "KI"
90 FOR I - 2 TO 100
91 REM CHECK BEM 2 TO 100
92 REM CHECK FOR 5% < X < 10% OF A
94 IF XM(I) > XMAX OR XM(I) < XMIN THEN GOTO 180
100 KOUNT-KOUNT + 1
110 X(I) - XM(I) \ SIGYY(I) - OUTPT(I,6)/1000
120 R(I) - X(I) - A - DIA/2.0

125 R2- R(I)^2
130 K(I) - SIGYY(I) * ( 2 * PI * R(I) )^0.5
140 SUMR - SUMR + R2
150 SUMR2 - SUMR2 + R2^2
160 SUMRK - SUMRK + R2*K(I)
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170 SUMK - SUNK + K(I)
175 PRINT #2, 1, XM(I), R(I),R(I)-2, SIGYY(I), K(I)I180 NEXT I
200 B - (KOUNT * SUNRK - SUMR*SUMK)/(KOUNT *SUMR2..(SUMR)-2)
210 KICFIT - (SUNK -B*SUMR)/KOUNTI 215 BETA - KICFIT /(46 * SQR( PI * A))
220 PRINT #2 -------------------------------------------------------------------

230 PRINT #2 ," "
240 PRINT #2 2'KI (REGRESSION PIT R-0.0) - ";KICFIT
245 PRINT #2 2' BASED ON R SQUARED"
250 PRINT #2," "
255 PRINT #2," BETA (SIG-46) - ";BETA
260 PRINT #2, ---------------------------------------------------------------------
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Appendix D: Computer Program CHOLE

This appendix contains the listing for the program

CHOLE. This program is a model generator for the tension

3I strip parametric study of section VII. The input to the

program is hole diameter, pitch, and crack length. The

program divides the crack into segments with the F.R. Harris

refinement technique (8]. The final model as output is in a

format required for TWOFS99 to read in.

All of the models used in the tension strip

parametric study were created with CHOLE. CHOLE is a VAX

BASIC 3.1 program run on a VAX 8800.

20 PRINT "BEM HOLE WITH CRACK MODEL GENERATOR - QUAD FINITE
BOUND"

22 print " GRADUATED CRACK ELEMENTS 3-3-3-25 RULE
30 PRINT " "

35 INPUT"ENTER NAME OF OUTPUT FILE : ";O$
36 OPEN 0$ FOR OUTPUT AS #1
40 INPUT"ENTER HOLE DIAMETER";DIA
50 INPUT"ENTER DISTANCE BETWEEN HOLE CENTERS ";PITCH
60 INPUT"ENTER LENGTH OF CRACK ";A
70 PRINT #1," TWO HOLES S-46 D-";DIA;" P-";PITCH;" A-";A
80 SXX-0.0 \ SYY-46000. \ SXY-0.0
115 RAD - DIA/2.0
120 CIRCUM- 2 * 3.14159 * RAD
130 REM DIVIDE CRACK BY 20 TO GET ELEMENT LENGTH
140 ELEN - A/12
150 REM CALCULATE HOW MANY ELEMENTS IN HALF CIRCLE (HOLE)
160 CEL -( CIRCUM/ ELEN )/2.0
170 CEL - INT( CEL) + 1 \ IF CEL < 20 THEN CEL-20
175 REM 4 FOR CRACK 4 FOR PRECRACK 1 FOR INBETWEEN
176 REM 2 CLOSE HORIZON 2 SIDES 1 TOP 1 SPC
185 ELTOT - 2 * CEL + 4 + 4 + 1 + 2 + 2 + 1 + 1
187 IF RAD + A - PITCH/2 THEN ELTOT-ELTOT-l
190 PRINT #1, ELTOT;",0,1,.3,10.3E6"
220 PRINT #1,"0.0"
230 PRINT #l,"0.0"
240 PRINT #l,"0.0"
242 T$ - "1,0,0" \ C$-","

105



U
U

244 REM THIS IS THE NON CRACK MATERIAL BETWEEN HOLES
245 IF PITCH > 2 * ( A + RAD) THEN GOTO 270
247 LTEMP - PITCH - RAD - RAD - A
248 X1-PITCH - RAD \ X2 - A + RAD + 0.5 * LTEMP
249 PRINT #1, "15,"; X1 ; C$ ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$I ; "4,0,0"l
250 Xl-X2 \ X2 - A + RAD + 0.25 * LTEMP
251 PRINT #1, "15,"; Xl ; C$ ; YI ; C$ ; X2 ; C$ ; Y2 ; C$

; ;"4,0,0"
252 X1-X2 \ X2 - A + RAD + 0.125 * LTEMP
253 PRINT #1, "15,"; Xl ; C$ ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$

i ;"4,0,0"
254 X1-X2 \ X2 - A + RAD
255 PRINT #1, "15,"; Xl ; C$ ; Yl ; c X ; x2 ; C$ ; Y2 ; C$

;"4,0,0"
256 Xl-X2 \ X2 - A + RAD - 0.125 * LTEMP
257 PRINT #1, "25,"; Xl ; C$ ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$ ;

T$
258 Xl-X2 \ X2 - A + RAD - 0.25 * LTEMP
259 PRINT #1, "3,"; Xl ; C$ ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$ ;T$
260 X1-X2 \ X2 - A + RAD- 0.5 * LTEMP
261 PRINT #1, "3,"; Xl ; C$ ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$ ;

T$
262 X1-X2 \ X2 - A+ RAD - LTEMP
263 PRINT #1, "3,"; Xl ; C$ ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$ ;

T$
264 IF A+RAD - PITCH/2 THEN GOTO 290
265 LTEMP - X2 - RAD \ LTEMP2 - (Xl - X2)/3
266 LTOT- INT(LTEMP/LTEMP2) + 1
267 Xl-X2 \ X2 - RAD \ Y2 - 0. \Yl - 0.
268 PRINT #1,LTOT ;". X1 C$ ;Y1 C$ ; X2 ; C$ ; Y2 ; C$

; 11i,0,0"

269 GOTO 290
270 LTEMP - PITCH-RAD -RAD -A -A
271 LTOT - INT (LTEMP/A) +1
272 Xl - PITCH-RAD \ Y1 - 0.0 \ X2 - Xl - LTEMP \Y2 -Y1
273 PRINT #1,LTOT ;","; Xl ; C$ ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$

;"4,0,0"
274 X1-X2 \X2 -A+RD+0.5 *A

S275 PRINT #1, "3,; Xl ; C$ ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$
;"4,0,0"

276 X1-X2 \ X2 - A + RAD + 0.25 * A
277 PRINT #1, "3,"; Xl ; C$ ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$

;"4,0,0"
278 Xl-X2 \ X2 - A + RAD + 0.125 * A
279 PRINT #1, "3,"; Xl ; C$ ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$

;"4,0,0"
280 X1-X2 \ X2 - A + RAD
281 PRINT #1, "25,"; Xl ; C$ ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$

;"4,0,0"
282 Xl-X2 \ X2 - A + RAD - 0.125 * A
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283 PRINT #1, "25,"; Xl ; C$ ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$
T$

284 Xl-X2 \ X2 - A + RAD - 0.25 * A
285 PRINT #1, "3,"; XI ; C$ ; Yl ; C$ ;X2 ;C$ ;Y2 ;C$;

T$
286 Xl-X2 \ X2 - A + RAD- 0.5 * A
287 PRINT #1, "3,"; Xl ; C$ ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$ ;

T$
288 X1-X2 \ X2 - RAD
289 PRINT #1, "3,"; Xl ; CS ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$ ;

T$
290 REM THIS IS THE HOLE CALCULATION SECTION
291 ANGLE - 3.14159 \ DELA - ANGLE/ CEL \ ANGLE-0.0
310 FOR I-i TO CEL
320 Xl - X2 \ Y1 - Y2
330 ANGLE - ANGLE + DELA
340 X2 - RAD * COS( ANGLE)
350 Y2 - RAD * SIN( ANGLE)
400 PRINT #1,"1," ; Xl ; C$ ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$

T$
420 NEXT I
600 REM THIS IS THE SECOND HOLE
605 ANGLE - 3.14159 \ DELA ANGLE/ CEL \ ANGLE-0.0
607 X2 - RAD + PITCH\ Y2 - 0.0 \ C$-","
610 FOR I-1 TO CEL
620 Xl - X2 \ Y1 - Y2
630 ANGLE - ANGLE + DELA
640 X2 - RAD * COS( ANGLE) + PITCH
650 Y2 - RAD * SIN( ANGLE)
660 PRINT #1,"1," ; Xl ; C$ ; Y1 ; C$ ; X2 ; C$ ; Y2 ; C$ ;

T$
720 NEXT I
721 REM THIS IS 3-D ON LEFT OF LEFT HOLE
722 DIST-3*DIA \X1 - -RAD \ X2 - Xl - DIST \ Y1-0.0 \ Y2-0.0
728 PRINT #1,"10," ; Xl ; C$; Y1 ; C$; X2; C$; Y2; C$;

"4,0,0"
732 REM THIS IS 3-D ON RIGHT OF RIGHT HOLE
734 Xl - PITCH + RAD +DIST \ X2 - Xl - DIST \ Y1-0.0 \ Y2-0.0
738 PRINT #1,'10," ; Xl ; C$; Y1 ; Cs; X2; C$; Y2; C$;i "14,0,0"

750 REM THIS IS THE FINITE (3-DIA) BOUNDARY
752 REM L SIDE
754 Xl - -RAD - DIST \ X2 - Xl
756 Y2 - DIST + RAD \Y1 0.0
758 PRINT #1,"10," ; Xl ; C$; Y1 ; C$; X2; C$; Y2; C$; "1,

o0, ";SXX
759 REM TOP
760 DIST - 3 * DIA

765 Xl - -RAD - DIST \ X2 - RAD + PITCH + DIST
770 Yl - DIST + RAD \ Y2 - Yl
775 PRINT #1,"40," ; Xl ; C$; Y; CS; X2; CS; Y2; CS; "1,

0,";SYY
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780 REM R SIDE
782 Xl - X2
784 Y - DIST +RAD \Y2 -0.1
785 PRINT #1,"10," ; Xl ; CS; Y1 CS; X2; C$; Y2; CS; "1,

0, ";SXX
790 REM THIS IS THE SPC
800 Y1-Y2 \ Y2 - 0.0
815 PRINT #1,"l," ; Xl ; C$; Yl ;CS; X2; CS; Y2; CS; "2,

0,0"
900 PRINT "END OF PROCESSING"
910 CLOSE #1
1000 END
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Appendix E: Fitting NASA/FLAGRO Crack Growth Output

This appendix contains the output from the

NASA/,F!.GRO analysis of section VIII. All three of the

analysis used the same materials and stress spectrums.

A. Bowi- Solution Analysis

FAIIGUE CRACK GROWTH ANALYSIS
(computed: NASA/FLAGRO, 1986 Aug version, 1987 Jul rev.)

U.S. customary units (inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

TEST OF BOWIE SOLUTION ANALYSIS

GEOMETRY

MODEL: TC03-Through crack from hole in plate.

Plate Thickness, t - 0.2500
Width, W - 100.0000

Hole Diameter, D - 0.2500
Distance of Hole Center to Edge, B - 50.0000

FLAW SIZE:

a (init.) - 0.7500E-01

MATERIAL

MATL 1: 7075-T6 AL, L-T

Material Properties:

:Matl: YS : Kle Klc Ak : Bk Thk : Kc : KIscc:
No.:

1 : 65.0: 42.0: 27.0: 0.75: 1.25: 0.250: 54.9:
:Matl: Crack Growth Eqn Constants (closure)

No.: C : n p : q : DKo : Co d : DKI :Alpha:Smax/:
: :: ::SIGo:

1 :0.275D-07:2.836:0.50:0.50: 2.50:1.00:1.00: 5.74: 1.75: 0.30:
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TEST OF BOWIE SOLUTION ANALYSIS3 MODEL: TC03

FA:TIGU SPECTRUM STRESS TABLE

S : M: NUMBER . So Sl
T A: OF
E T: FATIGUE (ksi) (ksi)
P : L: CYCLES : tl : t2 : ti t2

--------- ------- ----- . ---- --.----

1: 1: 100 : 0.00: 30.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET

TEST OF BOWIE SOLUTION ANALYSIS
MODEL: TC03

ANALYSIS RESULTS:

Block Final Flaw Size K max
Step a a-tip

1 0.092832 23.873066
2 0.111912 24.298998
3 0.132318 24.7408144 0.154225 25.2214260.177883 25.756659

60.203603 26.360479

7 0.231775 26.993177
8 0.262879 27.740626
9 0.297515 28.528124

10 0.336449 29.429157
11 0.380675 30.424570
12 0.431521 31.576437
13 0.490817 32.815969
14 0.561179 34.270541
15 0.646548 35.996892
16 0.753263 38.005786
17 0.892600 40.549542
18 1.088274 43.766852
19 1.412186 48.761760

FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K max - 55.00 K cr - 54.94
at Cycle No. 56. of Load Step No. 1 of Block No. 20
Crack Size a - 1.87187

110



1

I B. Shivakumar Solution Analysis

I FATIGUE CRACK GROWTH ANALYSIS
(compubed: NASA/FLAGRO, 1986 Aug version, 1987 Jul rev.)

U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

TEST OF SHIVAKUMAR SOLUTION ANALYSIS

GEOMETRY

MODEL: TC05-Through crack from hole in row of holes.

Plate Thickness, t - 0.2500
Hole Diameter, D - 0.2500
Distance between Holes, H - 1.0000

Ratio of Hole Diameter to Edge Distance, D/B - 0.0000
(Ratio of 0.0 denotes a very large edge distance)

FLAW SIZE:

3 a (init.) - 0.7500E-01

I
MATERIALI
MATL 1: 7075-T6 AL, L-T

Material Properties:

:Matl: YS : Kle Kic Ak : Bk : Thk Kc : KIscc:
No.:

1 65.0: 42.0: 27.0: 0.75: 1.25: 0.250: 54.9:

:Matl: Crack Growth Eqn Constants (closure)
No.: C n : p q : DKo : Co : d : DK1 :Alpha:Smax/:

S : : : : : : : : : :SIGO

3 :0.275D-07:2.836:0.50:0.50: 2.50:1.00:1.00: 5.74: 1.75: 0.30:

I
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I TEST CF SHIVAKUMAR SOLUTION ANALYSIS
MODEL: TCS5

3 FATIGUE SPECTRUM STRESS TABLE
------------------- -------- ------ -----
SAWTCOTH 0 - 30 KSI

5 S : M: NUMBER: SO Si S 52
T:A: OF
E T: FATIGUE (ksi) : (ksi)
P : L: CYCLES ti t2 ti t2 ti t2
1: 100 0.00: 30.00: 0.00: 0.00: 0.00: 0.00;

Environmental Crack Growth Check for Sustained Stresses

(Kmax less than KIscc): NOT SET

TEST OF SHIVAKUMAR SOLUTION ANALYSISI MODEL: TC05

ANALYSIS RESULTS:

ADVISORY: Estimated Net Section Stress > Yield Strength.
at Cycle No. 0. of Load Step No. i of Block No.
Crack Size a - 0.750000E-01

I Block Final Flaw Size K max
Step a a-tip

1 0.094329 24.414055

2 0.115210 24.922510U2
3 0.137799 25.448033
4 0.162406 26.050727
5 0.189473 26.739437
6 0.219583 27.535714
7 0.253507 28.430209
8 0.292277 29.476453

9 0.337329 30.668877

10 0.390770 32.098262
11 0.456008 33.810283

12 0.539788 36.204720
I 13 0.668205 42.025305

FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K max - 56.32 K cr - 54.94
at Cycle No. 24. of Load Step No. 1 of Block No. 14
Crack Size a - 0.747562I
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C. 0 Look-Up Table Analysis

FATIGUE CRACK GROWTH ANALYSIS

(computed: NASA,'FLAGRO, 1986 Aug version, 1987 Jul rev.)

U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

TEST OF BOUNDARY ELEMENT LOOK UP TABLE ANALYSIS

GEOMETRY

MODEL: DTO1-One-dimensional data table for through crack.

Plate Thickness, t - 0.2500

a/D : O

0.1000 1.7400
0.2000 : 1.3800
0.3000--- ------ ---00
0.4000 1.2500

0.5000 : 1.1900
0.6000 : 1.2000
0.7000 : 1.2400
0.8000 1.3400
0.9000 : 1.6800

where

SO :TENSION STRESS

FLAW SIZE:

a (init.) O .7500E-0l

MATERIAL

MATL 1: 7075-T6 AL, L-T

Material Properties:

:Matl: YS :Kle :Klc :Ak Bk :Thk :Kc Klscc:
No.:: :

1 :65.0: 42.0: 27.0: 0.75: 1.25: 0.250- 54.9:

:Matl: Crack Growth Eqn Constants (closure)1No.: C :n :p :q :DKo Co :d :DKI :Alpha:Siuax/:
:SIGO

1l:0.275D-07:2.836:0.50:0.50: 2.50:1.00:1.00: 5.74: 1.75: 0.30:
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TEST OF BOUNDARY ELEMENT LOOK UP TABLE ANALYSIS

MODEL: DT01

I FATIGUE SPECTRUM INPUT TABLE

SAWTOOTH 0 - 30 KSI

(Note: Stress - Input Va- .e * Stress Factor]
Stress Factor SF0: 1.0i

3 S : M: NUMBER : SO

T : A: OF
E : T: FATIGUE
P : L: CYCLES : ti : t2

: ------- ---- -- - - ------

1: 1: 100 : 0.'0: 30.00:

I Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET

I
I

TEST OF BOUNDARY ELEMENT LOOK UP TABLE ANALYSIS

MODEL: DT01

ANALYSIS RESULTS:

Block Final Flaw Size K max
Step a a-tip

1 0.100650 26.642060
2 0.131098 27,751991
3 0.166947 29.046889
4 0.211160 30.923850
5 0.270492 33.563043
6 0.361315 38.080432

FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K max - 55.11 K cr - 54.94
at Cycle No. 95. of Load Step No. 1 of Block No. 7
Crack Size a - 0.599436

I
I
I
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Appendix F: Comparison of Regression Fit Analysis

This appendix shows examples of linear regression

fits for large and small crack ratios, for both r (distance

from crack tip) and r2. As was explained in the main text of

this thesis, there is insignificant differences for the

values of KI predicted for small crack ratio problems from
2

linear regression fits of KI vs r or r . Figures 27 and 28

show the plots of KI vs r and r respectively for a small

3 crack ratio problem (crack ratio - 0.1) from the tension

strip parametric study of section VII. This data is for hole

diameter equal to 0.25 inches and pitch equal to four

diameters. Both plots indicate a value of KI at r-0 ofI 1/2
approximately 39 KSI(in) . However, Figures 29 and 30 show

the same plots for a crack ratio of 0.9 (same diameter holeI2
and pitch). While the r2 regression fit will indicate a KI

value of 112.7 KSI(in)1/ 2 , the r fit data will not even

predict a positive value of K. It is hypothesized that the

I indicated values of are not linear in r, and the portion

of the KI vs r curve plotted in Figure 29 is quadratic in r.

Therefore a linear regression fit is inadequate for the large

crack ratios, and was not used for the parametric study of

section VII.
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STRESS INTENSITY FACTOR VS CRACK TIP DISTANCE

CRRCK RATIO = 0.1

PLOTTEO AS FUNCTION OF R
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I Figure 27. Stress Intensity Factor Vs Radius (Crack Ratio-0.1)
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STRESS INTENSITY FACTOR VS CRACK TIP DISTANCE

CRACK RATIO = 0.1
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I Figure 28. Stress Intensity Factor vs Radius^2 (Crack Ratio-0.1)
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STRESS INTENSITY FACTOR VS CRACK TIP DISTANCE

CRACK RATIO 0.9

PLOTTED AS FUNCTION OF R
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I Figure 29. Stress Intensity Factor Vs Radius (Crack Ratio-0.9)
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STRESS INTENSITY FRCTOR VS CRRCK TIP DISTRNCE

CRRCK RRTIO = 0.9

PLOTTeO AS A FUNCTfON OP R2
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I Figure 30. Stress Intensity Factor Vs Radius^2 (Crack Ratio-0.9)
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This investigation analyzes a crack emanating from
one hole, and approaching a second hole, in a two hole
tension strip with finite boundaries using the Boundary
Element Method. The study included the effects of varying the
hole diameter, hole separation and the length of crack. The
final results were plotted as a function of the geometric
correction factor a which can be presented as a family of
curves. An example iamage tolerance analysis is presented
with the # curves being incorporated into a!.O look-up table
as used in the NASA/FLAGRO fatigue crack growt program. This
technique is acceptable in most fatigue crack growth programs
now used in the aircraft industry to ensure aircraft
structural integrity.

Several classic fracture mechanics problems are
analyzed, and computational efficiency as compared to
conventional finite element techniques is investigated.
Agreement with analytic solutions as well as other numerical
methods (finite element) is excellent. The computation
efficiency was shown to an improvement over existing
methods. ( (- Lj61r("
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